
 1

University of Tehran

Electrical and Computer Engineering Department

Digital Systems Design With VHDL, Test # 2

ECE

Fall Semester 1391

 Computer Account #___________________

 First Name :_________________________

 Last Name :__________________________

 Student Number :______________________

 Signature :__________________________

Grade:

Problem 1. ______/17

Problem 2. ______/17

Problem 3. ______/17

Problem 4. ______/17

Problem 5. ______/30

Total: ______/98 (2 free points / 100)

ONE PAGE PER PROBLEM

THIS IS AN OPEN BOOK EXAM

USE std_logic_1164 FOR ALL DESIGN PROBLEMS

USE OF SIMULATION PROGRAMS IS NOT ALLOWED

YOU HAVE A TOTAL OF 180 MINUTES FOR THIS TEST

 2

1. In the following partial codes, signal count which is of type BIT becomes 1 at time 13

and 0 at time 55. Write values of a and b between time 0 and 40. Put dots in unused

rows. Assume 0 initial values. Variables a and b are INTEGER.

-- code 1

PROCESS . . . BEGIN

 WAIT UNTIL count = ‘1’;

 WAIT FOR 12 ns;

 a := a + 1;

END

-- code 2

PROCESS . . . BEGIN

 WAIT ON count;

 WAIT FOR 9 ns;

 b := b + 1;

END

Time Count a b

00 0

13 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

55 0

 0

 0

 0

 0

 0

 0

 3

2. Show waveforms applied to the CUT inputs up to 80 NS.

ENTITY tester IS END TESTER;

--

ARCHITECTURE data OF tester IS

 SIGNAL reset, clock : BIT := '1';

 SIGNAL xx : BIT_VECTOR (3 DOWNTO 0) := "1101";

 SIGNAL z : BIT;

BEGIN

 CUT : CircuitUnderTest PORT MAP(xx, reset, clock, z);

 PROCESS BEGIN

 reset <= '1';

 WAIT FOR 26 NS;

 reset <= '0';

 WAIT FOR 4 NS;

 WAIT;

 END PROCESS;

 --

 clock <= NOT clock AFTER 5 NS WHEN NOW <= 70 NS ELSE '0';

 z <= xx’STABLE(21 NS)'TRANSACTION;

 --

 PROCESS BEGIN

 WAIT UNTIL clock = '1';

 WAIT FOR 3 NS;

 xx <= xx(0) & xx(3 DOWNTO 1);

 END PROCESS;

END ARCHITECTURE;

 4

3. In the VHDL code shown below, four processes generate drivers on w, x, y, and z

signals. Show transactions that expire on the drivers of each signal.

PACKAGE placing IS

 TYPE four IS (a, b, c, d);

END placing;

USE WORK.placing.ALL;

--

ENTITY placement IS END ENTITY;

--

ARCHITECTURE sequential OF placement IS

 SIGNAL w, x, y, z : four;

BEGIN

 w <= four'RIGHTOF(w) AFTER 100 NS

 WHEN (w /= four'RIGHT AND NOW <= 101 NS)

 ELSE a AFTER 100 NS;

 x <= four'LEFTOF(x) AFTER 80 NS

 WHEN (x /= four'LEFT AND NOW <= 101 NS)

 ELSE d AFTER 80 NS;

 y <= a AFTER 20 NS, w AFTER 30 NS, x AFTER 40 NS;

 PROCESS (x) BEGIN

 z <= TRANSPORT w AFTER 20 NS;

 END PROCESS;

END sequential;

 5

4. Show synthesizable VHDL code for a register unit that performs operations shown

below. The unit has a 3-bit mode (md) input, an asynchronous reset (rs) input, a 1-bit

output tri-state control (oe) input, and an 8-bit bi-directional io bus. The internal

register drives the io bus when oe is 1 and md is not 111. Use std_logic_1164.

md=000: does nothing

md=001: right shift the register

md=010: left shift the register

md=011: up count, (000, 001, 011, 010, 110, repeat)

md=100: down count, (opposite of above)

md=101: complement register contents

md=110: swap right and left 4 bits

md=111: parallel load

Provide asynchronous active high reset.

Positive edge clock

 6

5. Write a memory module that is shared and accessed by several other modules. The

memory is arbitrated for being accessed by the modules that perform memory block

read or write operations. When a module needs to read or write a block from or to the

memory, it asks checks if the memory is free and can be accessed. If so, the specified

operation that may take several nano-seconds will take place. If the memory is busy

with another device, the read or write operation goes on hold until the memory

completes its pending operation. Devices will be blocked if they need to access the

memory and the memory is busy with another device (read or write module).

a. Show the block diagram of this environment using four read-write modules

b. Implement the memory using sc_mutex. The memory is to be declared as an

8-K byte memory.

c. Write a read-write device (SC_MODULE) that requests memory access at

random times, reads or writes a block of memory in a given time, gets busy

with other things (mimic this by simple wait statements), and then again tries

to access the memory. Make these as parameters that the module is configured

by: reading or writing, memory block size, starting address, and the time the

device is busy with other things. The time it takes the memory to perform the

read or write operation depends on the size of the block, and is handeled by

the memory.

