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Generic RAM Core

PROCEDURE init mem (VARIABLE memory: OUT mem;
CONSTANT datafile: STRING) IS
FILE stddata : TEXT;
VARIABLE 1 : LINE;
VARIABLE data : std logic vector (memory'RANGE (2)) ;
BEGIN
FILE OPEN (stddata, datafile, READ MODE) ;
FOR i IN memory'RANGE (1) LOOP
READLINE (stddata, 1),; READ (1, data) ;
FOR j IN memory'REVERSE RANGE (2) LOOP
memory (i,3J) := data(j)
END LOOP;
END LOOP;
END PROCEDURE init mem;

TEXTIO Based Memoty init and dump Procedure
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Generic RAM Core

PROCEDURE dump mem (VARIABLE memory: IN mem;
CONSTANT datafile: STRING) IS
FILE stddata : TEXT;
VARIABLE stdvalue : std logic;
VARIABLE 1 : LINE;
BEGIN
FILE OPEN (stddata, datafile, WRITE MODE) ;
FOR i1 IN memory'RANGE (1) LOOP
FOR j IN memory'REVERSE RANGE (2) LOOP

stdvalue := memory (i, J)
WRITE (1, stdvalue) ;
END LOOP;
WRITELINE (stddata, 1) ;
END LOOP;

END PROCEDURE dump mem;

TEXTIO Based Memotry init and dump Procedure (Continued)
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Generic RAM Core

USE IEEE.std logic TEXTIO.ALL;
ENTITY std logic ram IS
PORT (address, datain : IN std logic vector;
dataout : OUT std logic vector;
cs, rwbar : IN std logic; opr : IN BOOLEAN) ;
END ENTITY std logic ram;
ARCHITECTURE behavioral OF std logic ram IS
TYPE mem IS ARRAY (NATURAL RANGE <>,
NATURAL RANGE <>) of std logic;
BEGIN

END ARCHITECTURE ;

Std_logic Unconstrained Memory
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Generic RAM Core

PROCESS
CONSTANT memsize : INTEGER := 2**address'LENGTH;

VARIABLE memory : mem (0 TO memsize-1,
datain'RANGE) ;

BEGIN
id: IF opr'EVENT THEN
IF opr=TRUE THEN init mem (memory, "memdata.dat") :;
ELSE dump mem (memory, "memdump.dat"); END IF;

END IF';
wr: IF cs = 'l' THEN
IF rwbar = '0O' THEN

FOR i IN dataout'RANGE LOOP
memory (conv_integer (address) ,i) :=datain (1)
END LOOP;

Std_logic Unconstrained Memory (Continued)
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Generic RAM Core

PROCESS
CONSTANT memsize : INTEGER := 2**address'LENGTH;
VARIABLE memory : mem (0 TO memsize-1,
datain'RANGE) ;
BEGIN
ELSE
FOR i1 IN datain'RANGE LOOP
dataout (i) <=memory (conv_ integer (address) , 1) ;
END LOOP;
END IF;
END IF;
WAIT ON cs, rwbar, address, datain, opr;
END PROCESS ;

Std_logic Unconstrained Memory (Continued)
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Synthesizable Push-Pop Stack

ENTITY stack IS
GENERIC ( max: std logic wvector := "101111") ;
PORT (STin : IN std logic vector;
clk, push, pop : IN std logic;
opr : IN BOOLEAN;
STout : OUT std logic vector;
empty, full : OUT std logic);
END ENTITY stack;

Stack Controller Outline
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Synthesizable Push-Pop Stack

ARCHITECTURE behavioral OF stack IS

SIGNAL ramin, ramout : std logic vector (STin'RANGE) ;

SIGNAL ramaddr, pntr : std logic vector (max'RANGE)
:= (OTHERS => '0'") ;

SIGNAL cs, rwbar, full temp : std logic:= '0';
SIGNAL empty temp : std logic:= 'l';
BEGIN
—— UPDATING PNTR
——- POP/PUSH

—— INSTANTIATE MEMORY
—— HANDLING EMPTY AND FULL
END ARCHITECTURE behawvioral ;

Stack Controller Outline (Continued)
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Synthesizable Push-Pop Stack

—— UPDATING PNTR
Update pntr: PROCESS (clk)
BEGIN
IF (clk = 'l' AND clk'EVENT) THEN
IF pop = 'l' THEN
IF empty temp /= 'l' THEN
pntr <= pntr - 1;
END IF;
ELSIF push = 'l' THEN
IF full temp /= '"l' THEN
pntr <= pntr + 1;
END IEF;
END IEF';
END IF;
END PROCESS ;

Stack Pointer Update
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Synthesizable Push-Pop Stack

——- POP/PUSH
pop_push: PROCESS (pop, push ,STin, ramout, pntr)
BEGIN

ramaddr <= (OTHERS => '0') ;

cs <= '0';

rwbar <= '1l';
ramin <= (OTHERS => '0') ;
STout <= (STin'RANGE => '0') ;

IF (pop = 'l' AND empty temp = '0O') THEN
ramaddr <= pntr - 1;
cs <= '1"';

rwbar <= '1';
STout <= ramout;

Pop.push Process
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Synthesizable Push-Pop Stack

—— POP/PUSH
pop push: PROCESS (pop, push ,STin, ramout, pntr)
BEGIN

ELSIF (push = '"l' AND full temp = '0O') THEN
ramaddr <= pntr;
cs <= '1';
rwbar <= '0';
ramin <= STin;
END IEF';
END PROCESS pop push;

Pop._push Process (Continued)
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Synthesizable Push-Pop Stack

INSTANTIATE MEMORY
UUl: ENTITY WORK.std logic ram (behavioral)
PORT MAP (ramaddr, ramin, ramout, cs, rwbar, opr)

HANDLING EMPTY AND FULL
empty temp <= 'l' WHEN (pntr = (pntr'RANGE => '0')) ELSE
full temp <= 'l' WHEN (pntr = max) ELSE '0';

empty <= empty temp;
full <= full temp;

'0';

April 2019

RAM Instantiation and empzty and full Flags

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

ARY%



April 2019
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Synthesizable Circular FIFO

LIBRARY IEEE;
USE IEEE.std logic 1164 .ALL;
USE IEEE.std logic unsigned.ALL;
ENTITY fifo unconst IS
GENERIC (fifo size : std logic vector
PORT (data in : IN std logic vector;
clk : IN std logic;
rst, rd, wr : IN std logic;
empty, full : OUT std logic;

data out : OUT std logic vector) ;

END ENTITY ;

:= "1000") ;

FIFO VHDL Code Outline
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Synthesizable Circular FIFO

ARCHITECTURE procedural OF fifo unconst IS

CONSTANT fsz : INTEGER := conv_integer (fifo size) ;
CONSTANT asz : INTEGER := fifo size'LENGTH - 1;
CONSTANT wsz : INTEGER := data in'LENGTH; --word size;
TYPE memory IS ARRAY (NATURAL RANGE <>) OF std logic vector (wsz-1 DOWNTO O0) ;
SIGNAL fifo ram : memory (0 TO fsz-1) ;
SIGNAL rd ptr, wr ptr:std logic vector (asz-1 DOWNTO O0)
SIGNAL full temp, empty temp : std logic;
BEGIN

(OTHERS => '0') ;

END ARCHITECTURE

FIFO VHDL Code Outline (Continued)
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Synthesizable Circular FIFO

ARCHITECTURE procedural OF fifo unconst IS

—— POINTER
empty temp <= 'l' WHEN ( rd ptr=wr ptr) ELSE '0';

full temp <= 'l' WHEN ( rd ptr=wr ptr + 1) ELSE '0';

empty <= empty temp;
full <= full temp;
END ARCHITECTURE ;

FIFO VHDL Code Outline (Continued)
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Synthesizable Circular FIFO
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Clocked Memory Writing

”‘V write

PROCESS (clk) BEGIN

IF (clk='1l'" AND clk'EVENT) THEN

IF (wr='l' AND full temp='0') THEN

fifo ram (conv_integer (wr ptr)) <= data in;

ELSIF (wr='1l' AND rd='1")

fifo ram (conv_integer| (wr ptr)) <= data in;

April 2019
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Clocked Memory Reading
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Clocked Memory Reading

\_

,read J
IF (clk='l' AND clk'EVENT) THEN

r IF (xd='l' AND empty temp='0') THEN —;:Ei:>“_'
fkk/f*

END IEF;
END PROCESS;

PROCESS (clk) BEGIN

data out <= fifo ram (conv_integer (rd ptr)) ;

ELS ='1l' AND wr="'1"' AND empty temp='l') THEN
= fifo ram (conv_integer (rd ptr));
END TIF; P ———___—\__—"

Y
“ g
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Multiple Clocked Register Process

pointer : PROCESS (clk) BEGIN
IFF (clk='l' AND clk'EVENT) THEN
IF rst='1l" THEN
wr ptr <= (OTHERS => '0') ;
rd ptr <= (OTHERS => '0');
ELSE

END IF;
END IF;
END PROCESS;

Updating FIFO Pointers
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Multiple Clocked Register Process

ELSE
IF (wr='1l' AND full temp='0') OR (wr='l' AND rd='l') THEN
wr ptr <= wr ptr+l;
ELSE
wr ptr <= wr ptr;
END IF;
IF (rd='l' AND empty temp='0') OR (wr='l' AND rd='l') THEN
rd ptr <= rd ptr+l;
ELSE
rd ptr <= rd ptr;
END IF;
END IF;

Updating FIFO Pointers (Continued)
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Dynamic FIFO Structure

TYPE fifo element;

TYPE pointer IS ACCESS fifo element;

TYPE fifo element IS RECORD
data : std logic wvector (7 DOWNTO O0) ;
link : pointer;

END RECORD ;

SHARED VARIABLE head, tail : pointer

NULL;

Dynamic FIFO Structure
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Different Hardware Levels
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Arithmetic Cores

Completely independent from connection handling

Can be used as embedded cotes in embedded designs
Carry lLookahead Adder
Sequential Multiplier
Booth Multiplier
Sinh of x
FIR filter
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One-bit Full-Adder Circuit
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Carry-Select Adder
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Sequential Multiplier
Array Multiplier
Booth Multiplier
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Multiplication
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Atray Multiplier

Figure circuit multiplies its xz and
yzinputs using the AND gate that
1s marked with a dot

Adds this result with its input
pattial product pz, using its carry
INPULt ¢z

This cell generates a partial
product po, a carty output ¢o, and
passes x7 and yz nputs on to its
outputs (xo and yo).
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Atray Multiplier

4x4 array multiplier that uses 16 of
the multiplier cells.

A 32-bit multiplier requires 1024

such cells.
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Shift-and-add Multiplication Process

Put A 1n a shift-register, always
observe its right-most bit, and
after every calculation, we move
it one place to the right, making
its next bit accessible.

For the partial products, instead

of writing one and the next one

to its left, we move the partial
product to the right as we are
writing it.
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Shift-and-add Multiplication Process

B

Because .4/0) is 1, the partial

sum of B + P is calculated.

= Hardware Oriented Multiplication Process (Continued)
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Shift-and-add Multiplication Process

L]

Because A/0/ 1s 0,
0000 + P is calculated

The right most bit of
which is shifted into A4,
and the rest replace P

= Hardware Oriented Multiplication Process (Continued)
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Shift-and-add Multiplication Process

o111 Jot]of1

The least significant 4 bits of

the multiplication result
become available in .4 and the
most-significant bits in P.

= Hardware Oriented Multiplication Process (Continued)
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Sequential Multiplier Design
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Sequential Multiplier

Multiplier Block Diagram

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A



Sequential Multiplier
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Sequential Multiplier
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Sequential Multiplier Design
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Sequential Multiplier Design

=  Datapath and Controller
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Sequential Multiplier Design

Multipliet Block Diagram
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Sequential Multiplier Datapath
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Sequential Multiplier Datapath

ENTITY datapath IS
PORT (clk, clr P, load P, load B : IN std logic;
msb out, 1lsb out, sel sum : IN std logic;
load A, shift A : IN std logic;
data : INOUT std logic vector (7 DOWNTO O0) ;
AQ : OUT std logic) ;
END ENTITY ;
ARCHITECTURE procedural OF datapath IS
SIGNAL sum, ShiftAdd : std logic vector (7 DOWNTO O0) ;
SIGNAL A, B, P : std logic vector (7 DOWNTO O0) ;
SIGNAL co : std logic;
SIGNAL op : std logic vector (1 DOWNTO O) ;
SIGNAL result : std logic vector (8 DOWNTO O0) ;

END ARCHITECTURE procedural;

= Shift-and-add Multiplier Datapath
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Sequential Multiplier Datapath

PROCESS (clk) BEGIN

IF (clk = '0' AND clk'EVENT) THEN
IF (load B = 'l') THEN B <= data;
END IFE;

END IF;

END PROCESS;

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN
IF (load;P = '1l'") THEN
P <= (co AND sel sum) & ShiftAdd (7 DOWNTO 1) ;
END IF,
END IEF,

END PROCESS;

Shift-and-add Multiplier Datapath (Continued)
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Sequential Multiplier Datapath

PROCESS (clk) BEGIN
IF(clk = '0' AND clk'EVENT) THEN
CASE op IS
WHEN "01" => A <= ShiftAdd(0) &
A (7 DOWNTO 1) ;
WHEN "10" => A <= data;
WHEN OTHERS => A <= A;
END CASE;
END IF;
END PROCESS ;

= Shift-and-add Multiplier Datapath (Continued)
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Sequential Multiplier Datapath

result <= ('0'&P) + ('0'&B) ;
co <= result (8) ;
sum <= result (7 DOWNTO O0) ;

A0 <= A(0) ;

ShiftAdd <= (OTHERS => '0') WHEN clr P = 'l' ELSE
P WHEN sel sum = '0O' ELSE sum;

data <= A WHEN lsb_out = ']l]" ELSE (OTHERS => 'Z') ;

data <= P WHEN msb_out = ']l]" ELSE (OTHERS => 'Z') ;

op <= load A & shift A;
END ARCHITECTURE procedural;

= Shift-and-add Multiplier Datapath (Continued)
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Multiplier Controller
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Multiplier Controller

LIBRARY IEEE;

USE IEEE.std logic 1164 .ALL;

USE IEEE.std logic unsigned.ALL;

ENTITY controller IS

PORT (clk, start, AO : IN std logic;

clr P, load P, load B : OUT std logic;
msb out, 1sb out, sel sum : OUT std logic;
load A, Shift A, done : OUT std logic)

END ENTITY ;

=  Multiplier Controllet

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AA



April 2019

Multiplier Controller

ARCHITECTURE procedural OF controller IS
TYPE state IS (idle, init,
ml, m2, m3, m4, m5, m6, m7, m8,
rsltl, rslt2) ;
SIGNAL current : state;
BEGIN
sequential: PROCESS (clk) BEGIN
IFF (clk = 'O'" AND clk'EVENT) THEN
CASE current IS
WHEN idle =>

IF start = '0O'" THEN current <= idle;
ELSE

current <= init;
END IF;

END PROCESS; -—-

=  Multiplietr Controller (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A4



Multiplier Controller

sequentials PROCESS (clk) BEGIN
(clk = '0'" AND clk'EVENT) THEN
SE current IS

WHEN init =>
current <= ml;
WHEN ml | m2 | m3 | m4d | m§ | m6 | m7 | m8
=>
current <= state'SUCC (current) ;
WHEN rsltl =>
current <= rslt2;
WHEN rslt2 =>

current <= idle; /@

—

WHEN OTHERS =>
current <= idle;
END CASE;

=  Multiplier Controllet
VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controller

sequential: PROCESS (clk) BEGIN

END PROCESS; -—-

combinational: PROCESS (current, start, A0) BEGIN

clr P <= '0'; load P <= '0';
load B <= '0";
msb out <= '0'; 1sb out <= '0';
sel sum <= '0'; load A <= '0';
Shift A <= '0'; done <= '0';
CASE current IS

WHEN idle =>

IF start = '0O"'" THEN
done <= '1';
ELSE
load A <= '1"';
clr P<= 'l1l';
load P <= '1';
END IF;

Cq\l{/y\ L
= B
%Hg j |
F________ﬂ——P
T D
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Multiplier Controller

combinational: PROCESS (current, start, AO0) BEGIN
CASE current IS
WHEN init =>
load B <= '1';
WHEN ml | m2 | m3 | m4 | mS | m6 | m7 | m8
=>
Shift A <= '1';
load P <= '1';

IF (A0 = "l'"'") THEN
sel_sum <= '1"';
END IF;

WHEN rsltl =>

1sb out <= '1';
WHEN rslt2 =>

msb out <= 'l1l';

=  Multiplier Controllet
VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controller

combinational: PROCESS (current, start, AO0) BEGIN
CASE current IS
WHEN rslt2 =>
msb out <= 'l1l';
WHEN OTHERS =>
clr P <= '0'; load P <= '0';
load B <= '0'; msb out <= '0';
1sb out <= '0'; sel sum <= '0"';
load A <= '0'; Shift A <= '0';
done <= '0';
END CASE;

END PROCESS;
END ARCHITECTURE procedural;

=  Multiplier Controllet
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Top-level Multiplier
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Top-level Multiplier

ENTITY Multiplier IS
PORT (clk, start : IN std logic;
databus : INOUT std logic vector (7 DOWNTO O0) ;
1sb out, msb out, done : OUT std logic);
END ENTITY
ARCHITECTURE structural OF Multiplier IS
SIGNAL clr P, load P, load B, msb out t, A0 : std logic;
SIGNAL 1sb out t, sel sum, load A, Shift A : std logic;
BEGIN

END ARCHITECTURE structural;

=  Top-level Multiplier Module

VHDL: Modular Design and Synthesis of Cores and
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Top-level Multiplier

ARCHITECTURE structural OF Multiplier IS
BEGIN
dpu : ENTITY WORK.datapath (procedural)
PORT MAP (clk, clr P, load P, load B,
msb out t, 1lsb out t, sel sum,
load A, Shift A, databus, A0 )/
cu : ENTITY WORK.controller (procedural)

PORT MAP (clk, start, A0, clr P, load P, load B,
msb out t, 1sb out t, sel sum,
load A, Shift A, done );

msb out <= msb out t;
1sb out <= 1sb out t;
END ARCHITECTURE structural;

= Top-level Multiplier Module (Continued)
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Booth Multiplier

Booth algorithm is for sighed number multiplication.

The algorithm 1s similar to the sequential multiplication shift-and-
add algorithm, except that two bits, instead of only one bit, will be
considered for making shift, add, and subtract decisions.

An extra bit (initially 0) is added to the right of A, and decisions
for adding B to the partial product (P+B) and shifting, subtracting
B from the partial product (P-B and shifting, or just shifting the

partial product will be based on the right-most two bits of the
extended A.

VHDL: Modular Design and Synthesis of Cores and
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Booth Multiplier- Example

AxB
B=01101101
A=10110110 B :
A i1s a negative number.
A: 1011011 : 40 x 20 = Qoo )
101101300 X = -002
101108300 X = 000
x 23 = +008
x 2¢ = =0k6m
X = 000
x 26 = +064m
101101100 x 27 = -128
AxB= (Bx +000) + (Bx -002) + (Bx -000) + (Bx +008)
(Bx-016) + (Bx -000) + (Bx +064) + (Bx -128)
VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi
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Booth Multiplier

Booth
Multiplier
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Multiplication Process

Initialization:
Two registers Mcand containing first operand and P containing the result
Mcand is 32-bit and P is 65-bit register
Mcand = A, P={32°b0, B, 1’b0}

. Check the two lowest bits of P
11 or 00: go to step 3.
01 or 10: go to step 2

LSBs of P: 01 => Mcand is added to the most 32 bits of P.
LSBs of P: 10 => Mcand is subtracted from the most 32 bits of P.

. Shift P one place to the right

End of Multiplication: P[64:1] contains the result.

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi



Multiplication Process

Inputs 4 and B are

loaded into the registers

BEEN| OOOEOEEBO P[1:0] is 11 and 00, P

Mecand is subtracted from

PJ64:33] because P[1:0] is 10. [8LL/1[1]0] (1]1]1]0)
[0[o]ololo]o/1](1] ] [olool1lolo]ol(1] 1

is shifted to right.

pEBn
FOToToM0 01011+ nnm:*m ]

Mecand is added to P/64:33]
because P/7:0] is 01. [1]1]1]0] HEBKQ
[0]olo]ol1][o]0](0] T [1[1]1]/1/0[1/0/(0] g

_ EBBEBOD
O | EEEEBDBDD |

[ 1]1][1]1[0]1]
= Hardware Oriented%ﬂtm%iﬁg%on Procests}1 confignued

r Design and Synthesis of Cores and
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Multiplication Process

Register Mcand is

initialized by A.

Register P will Register P is initialized

contain the result in by {4’b0, B, 1’b0}.
the final step.

= Hardware Oriented Multiplication Process (Continued)

VHDL: Modular Design and Synthesis of Cores and
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Multiplication Process

First, we check the two
LSBs of P.

Second, because P/7:0/ 1s 10,
we subtract Mceand from

000 1 0 0 o1 1]

Third, we shift P one place

to right.
= Hardware Oriented Multiplication Process (Continued)
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Multiplication Process

First, we check the two LLSBs

Second, because P/7:0]1s 11,
we only need to shift P to right.

0 0 o 010 0 0]

= Hardware Oriented Multiplication Process (Continued)

VHDL: Modular Design and Synthesis of Cores and
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Multiplication Process

First, we check the two L.SBs

Second, because P/7:0] is 01, we
add Mcand to upper 32 bits of P.

The MSB is one due to
performing signed shift on P ’ ﬁnnnn
[+ 1 2170100 o

Third, we shift P one place
to right.

= Hardware Oriented Multiplication Process (Con?
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Multiplication Process

First, we check the two LLSBs
of P.

Second, because P/7:0] is 00, we
only need to shift P to right.

The MSB is one due to

berforming signed shift on P

The final result is now on

the P/64:1].

Hardware Oriented Multiplication Process =

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi
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Booth Multiplier

Booth
Multiplier

Multiplication

Process
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Booth Multiplier Design

Booth Multiplier
Design
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Booth Multiplier Design

Booth Multiplier
Design

Control Data
Partitioning
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Control Data P azseaies

In each new state, several

Data part consists of control signals are issued, and

registers, logic units, and the components of the datapath

their interconnecting buses. start reacting to these signals.

Datapath

The controller is a state
machine that 1ssues control
signals for control of what gets

Triggered with the

. clocked into the data registers.
same clock signal

= Datapath and Controller On the rising edge of the

system clock, the controller

VHDL: Modular Design and Synthesis of Cores and SOCS LIle 2 S8y ST,
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Booth Multiplier Design

Booth Multiplier
Design

Booth Multiplier

Datapath
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Multiplier Dat

Adder/Subtractor

32-bit register

To load P with

1 Selects P/64:33] + Mcand or

P[64:33] - Mcand depending

on the value of se/ SumSub

Multiplexer

Two LLSB of P
to determine
next step

initial data or
partial product

||
||
65-bit shift register

Multiplier Block Diagram

VHDL: Modular Design and Synthesis of Cores and
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Booth Multiplier Design

Booth Multiplier
Design

Datapath

Description
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Datapath Description

ENTITY datapath is
PORT( clk, Set P, load M, load P,
shift P, preset, sel SumSub : IN std logic;
A, B : IN std logic vector (31 downto O0);
Product : OUT std logic_vector (63 downto 0);
P10 : OUT std logic vector (1 downto 0));
END ENTITY,;

ARCHITECTURE procedural OF datapath IS
SIGNAL sum, sub, AddResult, Mcand : std logic vector ( 31 downto 0);
SIGNAL data, P : std logic vector (64 downto 0);
SIGNAL ls : std logic vector (1 downto 0);

BEGIN

|
Datapath Code VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi



Dt e Datapath Description
Mecand for
keeping input

|

PROCESS (clk) BEGIN
IF(clk = '0' AND clk'EVENT) THEN
CASE (ls) 1IS
WHEN "O1" => P <= P(64) & P(64 DOWNTO 1) ;
WHEN "10" => P <= data;
WHEN OTHERS => P <= P;
END CASE;
END IF;
END PROCESS;

Implements the

65-bit shift-register for keeping
the result and partial products

= Datapath Code (continued)

VHDL: Modular Design and Synthesis of Cores and
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Two LSB of P going to . .
controller to determine the D 1t ap ath D eS Cl‘]_p t]_()n

next step

The Mcand is added or

subtracted to/from

upper 32 bits of P
sel_SumSub selects sum or
sub to store in the P

linitial data or

ls <= load P & shift P; intermediate data
u » going to P based on

END ARCHITECTURE procedural; [eabatabibiis Set_P

placed on the Product

= Datapath Code (continued)
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Booth Multiplier Design

Booth Multiplier
Design

Booth Multiplier

Controller
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Multiplier Controller

Multiplier waits for
start while loading M and P

States of Multiplier

7

\ 1ELE Checking 2 L.SB of Pto

r specify the next step
Check 2bits ,,

\ — Multiplier adds or

( subtracts Mcand to/from

.~ Sum_Sub P/64:33] based on P10
Shift Multiplier shifts P one

\ place to right

= Multiplier Control States

VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controller

ENTITY controller IS PORT (clk,
P10

END ENTITY;

SIGNAL current, nextState
SIGNAL CntValue

Set P, load M, load P
shift P, sel SumSub, done

start IN std logic;

IN std logic_vector (1 downto O0);
OUT std logic;
OUT std logic) ;

state;

std logic vector (5 downto 0);
SIGNAL preset, cntEn, cntZero

std logic;

ARCHITECTURE irocedural OF controller IS Suuesofnmﬂdpha:

=  Controller Code

VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controller

PROCESS (clk) BEGIN Implements the
IF(clk = '0' AND clk'EVENT) THEN 0-bit down counter for counting
IF (preset = 'l') THEN number of steps
CntValue <= "100000";
ELSE
IF (cntEn = 'l') THEN
CntValue <= CntValue - 1;
ELSE
CntValue <= CntValue; /L%:¢:
END IF; —
END IF; fra‘r
END IF;
END PROCESS; @ 5 !

=  Controller Code

VHDL: Modular Design and Synthesis of Cores and
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Multi r lier Controlle Process block to issue

ontrol sionals and make

_ state transitions
Set P <= '0'; load_M <= '0'; load_P <= '0"';
shift_P <= '0'; sel_SumSub <='0';, cntEn <= '0';

done <= '0'; preset <= '0'; All s |
CASE ( current ) IS contro Slgna OutputS
WHEN idle => are set to their inactive values.
To initialize P ) IF (start = '0') THEN
o Inttialize P register — v
& oo en done <= MLYS To load Mcand

To preset the counter to

32
END IF;

WHEN Sum Sub =>

one, indicating that Mcand remains zero, indicating

should be addcd to 1 that Mcand should be

bits of P

: subtracted from upper bits
conaoner Code (COl’ltlI’lllCd Pp

VHDL: Modular Design and Synthesis of Cores and of P
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Multiplier Controller
P will be shifted to the right and

counter will count down, showing that

WHEN Shift =>

Cmnr < S

WHEN OTHERS =>

Set P <= '0"'; load M <= '0"'; load P <= '0"';
shift P <= '0"; sel SumSub <='0'; cntEn <= '0";
done <= '0'; preset <= '0"';

END CASE;
END PROCESS;

= Controller Code (continued)

VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controllet

for state transition.

CASE current IS

LI SRS If P70is 11 or 00, P should
IF (start = '0') THEN i i

nextState <= idle: only be shifted, otherwise,

ELSE Mcand should be added or

nextState <= Check 2bits ;NI svlareRieyasce)ssBilloISIieres
shifting operation.

END IF;
To check the number [zt BeI o) S04 o F BB

of multiplication steps

ELSE

nextState <= idle;
END IF;

=  Controller Code
VHDL: Modular Design and Synthesis of Cores and
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Multiplier Controller

WHEN Sum Sub =>

nextState <= Shift;
WHEN Shift =>

nextState <= Check 2bits;
END CASE;

END PROCESS;

PROCESS (clk) BEGIN
IF( clk = '"1l'" and clk'event ) THEN
current <= nextState;
END IF;
END PROCESS;

END ARCHITECTURE procedural;

=  Controller Code

VHDL: Modular Design and Synthesis of Cores and
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Booth Multiplier Design

Booth Multiplier
Design

Top-Level Code
of the Multiplier
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Booth Multiplier
VHDL Implementation

ENTITY booth mult IS
PORT (mc, mp : IN std logic vector (7 downto 0) ;
clk, start : IN std logic;
prod : OUT std logic vector (15 downto O0) ;
busy : OUT boolean) ;
END ENTITY booth mult;
ARCHITECTURE behavioral OF booth mult IS
SIGNAL A, M : std logic vector (mc'RANGE) ;

SIGNAL Q : std logic vector (mc'LENGTH DOWNTO O0) ;

SIGNAL sum, dif : std logic vector (mc'RANGE) ;
SUBTYPE cnt IS INTEGER RANGE 0 TO mc'LENGTH;
SIGNAL count : cnt := 0O;

BEGIN

END ARCHITECTURE behavioral;

=  Booth Algorithm VHDI. Code

VHDL: Modular Design and Synthesis of Cores and
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Booth Multiplier
VHDL Implementation

BEGIN
sum <= A + M;
dif <= A - M;
prod <= A & Q (mc'LENGTH DOWNTO 1) ;
busy <= (count < mc'LENGTH) ;
Counter: PROCESS (clk) BEGIN

IF (clk = '"l' AND clk'EVENT) THEN
IF (start = 'l') THEN count <= 0;
ELSIF (count < mc'LENGTH) THEN count<= count + 1;
END IF;
END IF;

END PROCESS;

END ARCHITECTURE behavioral;

=  Booth Algorithm VHDL Code (Continued)
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Booth Multiplier
VHDL Implementation

RegClocking: PROCESS (clk) BEGIN

IF (clk = 'l' AND clk'EVENT) THEN
IFF (start = 'l') THEN
A <= (OTHERS => '0');
M <= mc;

Q <=mp & '0';
ELSIF (count < mc'LENGTH) THEN

END TIE;
END IF;
END PROCESS;

=  Booth Algorithm VHDL Code (Continued)
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Booth Multiplier
VHDL Implementation

ELSIF (count < mc'LENGTH) THEN
CASE Q (1 DOWNTO 0) IS
WHEN "01" => ——ADD AND SHIFT
Q <= sum(0) & Q(Q'LEFT DOWNTO 1) ;
A <= sum(sum'LEFT) &
sum (sum' LEFT DOWNTO 1) ;
WHEN "10" => ——SUBTRACT AND SHIFT
QO <= dif(0) & Q(Q'LEFT DOWNTO 1) ;
A <= dif (dif'LEFT) &
dif (dif'LEFT DOWNTO 1) ;
WHEN OTHERS => ——SHIFT ONLY
Q <= A(0) & Q(Q'LEFT DOWNTO 1) ;
A <= A(A'LEFT) & A(A'LEFT DOWNTO 1) ;
END CASE ;
END IF;
END IF;
END PROCESS ;

VVHDL : Modular Design and Synthesis of Cores and
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Handshaking

Completely independent from data handling

Wrappers and Interfacing Utilities help to implement handshaking
Simple handshaking

Register file

Data 32-bit block

VHDL: Modular Design and Synthesis of Cores and
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Types of handshaking

Handshaking between two systems
Handshaking for accessing a shared bus

Memory handshaking
DMA mode or butst mode

VHDL: Modular Design and Synthesis of Cores and
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Why Handshaking

Two systems want to communicate data and they don’t
necessarily have the same timing

The systems have to send some signals before the actual data s
transmitted

Handshaking implementation is a patt of the control of the
system

VHDL: Modular Design and Synthesis of Cores and
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Between Two Systems Handshaking

Hach system has its own clocking

They have to have certain signals to talk

Other
systems

VHDL: Modular Design and Synthesis of Cores and
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Fully Responsive Handshaking

A: dataready

B: accept

VHDL: Modular Design and Synthesis of Cores and
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/—\ startdata

dataready=1

A state
machine

April 2019

dataready=0

Waiting
accept=0 dataready=1

doneSendin
S B state asAccepted
machin

dataready=0 Alldone accept=1

4—%(2 e 7 :¢ accept=0
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Using an arbiter to assure that
none of the systems will
simultaneously access the shared

bus

Hach system has to have its own
request and grant signals

request

v
=
(a0
o
Q
—
T
N o
v

Arbiter:grantA

Bus: busy with someone else A has the bus
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Tyye Leyel Elzreiclgeizlainne

Assume that system A wants to send some data to B through a

shared bus

At first A should talk to the arbiter and catches the bus by issuing
a request

Once it puts the data on bus it informs system B by issuing ready

After data is picked up by B, A removes its request

VHDL: Modular Design and Synthesis of Cores and
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v
=]
o
o
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Request bus

reg=1

Using bus

reg=1
ready =1

accept=1
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A:addr Valid address

A r/~w | writing
A:CS | |
Mem: memready | |

emready=0

-
S
[1+]
2
E
@
E

Writing

valid data,
addr, r/~w
cs=1
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We can combine type two and three of handshaking

At first A should deal with arbiter and gets the permission of
using the bus

Then it should send signals to the memoty and waits for
memteady

VHDL: Modular Design and Synthesis of Cores and
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Burst writing or DMA writing or block writing

memory
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DataBus32 Data8

32 8
ReadData32 readData8

2ddrBus16 Interface |[EEERE

16 18
memResdy32 memReady8

grant lrequest
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. Counter
Addrreg 16-bit
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Combinational
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Datapath

GntA RegA GntB RegB GntC ReqC GntD ReqD

Controller
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Input Output
Wrapper Wrapper

InReady InAccepted OutAccepted OutReady
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> Multipiier ™

ty

Smar Dene
A0 Mul
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e = 1;

a=1;

for( i = 1; i < n; i++ ) {
a=axxx (1/1);
e = e + a;
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WAIT ON_START

Busy =0

Loadx =1
Preseta=1
Presete=1
Presetc=1

Sart =1

(CALC NEXT_TERM )

e )
CALC COMPLETE

Busy =0
Done=1

(CALC NEXT _TERM )

Load_a_:l loada=1
SHli=1 o

L D Slx=1

tc=1
N J

=0
Y

—7 )

ADD NEWN TERM

loade=1
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> Dataln
84 84 84 84
datareg3 datareg2 dataregl datareg0
Clk * Y * * y + A
Idinput X8 I
48 NN
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L N > DataOut
A > MUX 4tol ——»
2/
7
—> co
\_ _/
Counter A A
3-bit
A
| counten
rst_counter / \
clk————

: InAccept

rs

- Idinput

InReady
Controller ——— counten

Cco
rst_regs
done "8

rst_counter
start

\_____/



InReady
WAIT_ON_InReady INPUT_ACCEPT PUT DATA
rst_regs=1 InAccept =1 -
rst_counter = 1 Idinput = 1 start=1
~CO e
co
/OIV
START
WAIT_ON_DONE |&— —
counten=1 / \
Clk——

: InAccept

rs

InRead — |dinput

nReady
Controller —— counten

co
done rst_regs

rst_counter
start

N



Controller

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi YAV



WAIT_ON_GRANT

WAIT_ON_DONE
- - LoadData=1
counten=1

WAIT_ON_ACCEPT

Counter
3-bit

Controller
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Input Output
Wrapper Wrapper

InReady InAccepted OutAccepted OutReady
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CORIDIE

The CORDIC algorithm is an iterative technique based on the
rotation of a vector which allows many transcendental and
trigonometric functions to be calculated

[t is achieved using only shifts, additions/subtractions and table
look-ups which map well into hardware
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XCoS¢p — ysing
yCcos¢ + xsing

X'= cosg:[x — ytang]

y'= cos¢-[y + x tang]
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SORIDIGVAGVANTACES

<)

\P
/

Number of gates required in hardware implementation on an
FPGA, are minimum and hardwatre complexity 1s greatly reduced

Cost of 2 CORDIC hardware implementation 1s less as only shift
registers, adders and look-up table (ROM) ate required

Delay involved duting processing is comparable to that of a
division ot square-rooting operation

No multiplication and only addition, subtraction and bit-shifting
opetation
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Input Logic 1’

Data Output
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ALUSel=2:0=

clear

Done
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Accelerator right
ILeft
Extended instructions

Near memoty

filter FIR from register file (¢f in the wrapper)
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Wrappets

Data sizing form ICEEP notes, that includes hand-shaking and
arbitration

A wrappet only for handshaking, another for data sizing only for
burst connections, and the other for tf handling for extended
insts rf can be the rf of the processor mapped to this tf
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HACIING;
=

[LRU, very different from other structures
DMA, using arbitration handles the memory reads and wiites

Not arithmetic hardwares
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v

Von Neumann architcetures

They have instructions, a processor with 4 instructions, it only
accesses the memoty, instruction fetch

Next step 1s the Somayeh processot which 1s a processor that
does the arithmetic work like sine, cosine, it only loads the
program and has a pc to fetch the instruction

Program counter ot the sequencer
SAYEH Processor
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von Neumann Computer Model

von Neumann

Computer Model
Processor and Processor Model
Memory Model Specification
Designing the :
Adding CPU Design of Datapath
: AddingCPU
Control Part Design VHDL Description
Data Components DaralPath Description
Controller Description The Complete Machine
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Processor and Memory Model

von Neumann
Computer Model

Processor and
Memory Model
Designing the
Adding CPU

Control Part Design
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Data Components

ENTITY AC IS
PORT (data in : IN std logic wvector (7 DOWNTO O) ;
load, clk : IN std logic;

data out : OUT std logic vector (7 DOWNTO 0)) ;

END ENTITY ;

ARCHITECTURE procedural OF AC IS BEGIN
PROCESS (clk) BEGIN

IF clk = 'l' AND clk'EVENT THEN
IF load = 'l' THEN
data out <= data in;
END IF;
END IF;

END PROCESS;
END ARCHITECTURE ;

=  Datapath Components of the Adding Machine
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Data Components

ENTITY IR IS
PORT (data in : IN std logic wvector (7 DOWNTO O) ;
load, clk : IN std logic;
data out : OUT std logic vector (7 DOWNTO 0)) ;
END ENTITY
ARCHITECTURE procedural OF IR IS BEGIN
PROCESS (clk) BEGIN

IF clk = '1l'" AND clk'EVENT THEN
IF load = 'l' THEN data out <= data in; END IF;
END IF;

END PROCESS;
END ARCHITECTURE

=  Datapath Components of the Adding Machine (Continued)
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Data Components

ENTITY PC IS
PORT (data in : IN std logic vector (5 DOWNTO O) ;
load, inc, clr, clk : IN std logic;

data out : OUT std logic vector (5 DOWNTO 0)) ;

END ENTITY ;
ARCHITECTURE procedural OF PC IS

SIGNAL pc : std logic wvector (5 DOWNTO O0) ;
BEGIN

PROCESS (clk) BEGIN

IF clk = '"l' AND clk'EVENT THEN
IF clr = 'l' THEN pc <= (OTHERS => '0'") ;
ELSIF load = 'l' THEN pc <= data in;
ELSIF inc = 'l' THEN pc <= pc + 1; END IF;
END IF;

END PROCESS;
data out <= pc;
END ARCHITECTURE ;
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Data Components

ENTITY ALU IS
PORT (a, b : IN std logic vector (7 DOWNTO O) ;
pass, add : IN std logic;
alu out : OUT std logic vector (7 DOWNTO O0)) ;
END ENTITY
ARCHITECTURE functional OF ALU IS
SIGNAL alu res : std logic vector (7 DOWNTO O0) ;
BEGIN
PROCESS (a, b, pass, add) BEGIN

IF pass = 'l' THEN alu res <= a;

ELSIF add = 'l' THEN alu res <= a + b;
ELSE alu res <= (OTHERS => '0'");

END IF;,

END PROCESS;
alu out <= alu res;
END ARCHITECTURE

= Datapath Components of the Adding Machine (Continued)
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DataPath Description

ENTITY datapath IS

PORT (ir on adr, pc on adr, dbus on data : IN std logic;

data on dbus, 1d ir, 1ld ac, ld;pc : IN std logic;
inc pc, clr pc,
pass, add, alu on dbus, clk : IN std logic;
adr bus : OUT std . logic wvector (5 DOWNTO O0) ;
op_code : OUT std logic vector (1 DOWNTO O0) ;
data bus : INOUT std logic wvector (7 DOWNTO 0)) ;
END ENTITY ;
ARCHITECTURE structural OF datapath IS
SIGNAL dbus, ir out, a side
std logic vector (7 DOWNTO O0) ;
SIGNAL alu out, b side : std logic vector (7 DOWNTO O0) ;
SIGNAL pc out : std logic wvector (5 DOWNTO O0) ;

END ARCHITECTURE

= Adding CPU Datapath Description
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DataPath Description

ARCHITECTURE structural OF datapath IS

BEGIN
IR : ENTITY WORK. IR (procedural)
PORT MAP (dbus, 1d ir, clk, ir out);
PC : ENTITY WORK.PC (procedural)

PORT MAP (ir_out(5 DOWNTO 0) , ld;pc, inc_pC,
clr pc, clk, pc out) ;
AC : ENTITY WORK.AC (procedural)
PORT MAP (dbus, 1ld ac, clk, a side);
ALU : ENTITY WORK.ALU (functional)
PORT MAP (a side, b side, pass, add, alu out );

b side <= '0'&'0'&ir out(5 DOWNTO O0) ;

END ARCHITECTURE

=  Adding CPU Datapath Description (Continued)
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DataPath Description

ARCHITECTURE structural OF datapath IS

BEGIN
adr bus <= ir out (5 DOWNTO 0) WHEN ir on adr = '1'
ELSE (OTHERS => 'Z');
adr bus <= pc out WHEN pc on adr = '"l' ELSE
(OTHERS => 'Z') ;
dbus <= alu out WHEN alu on dbus = 'l' ELSE

(OTHERS => 'Z') ;
data bus <= dbus WHEN dbus on data = 'l' ELSE
(OTHERS => 'Z') ;
dbus <= data bus WHEN data on dbus
(OTHERS => 'Z');
op_code <= ir out(7 DOWNTO 6) ;
END ARCHITECTURE ;

1" ELSE

=  Adding CPU Datapath Description (Continued)
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Controller Description

ENTITY controller IS
PORT (rst, clk : IN std logic;
op_code : IN std logic wvector (1 DOWNTO O0) ;
rd mem, wr mem : OUT std logic;
ir on adr, pc on adr : OUT std logic;

dbus _on data, data on dbus, 1d ir : OUT std logic;
1d ac, ld;pc, inc pc, cl:_pc,pass : OUT std logic;

add, alu on dbus : OUT std logic) ;
END ENTITY ;
ARCHITECTURE procedural OF controller IS
TYPE state IS (Reset, Fetch, Decode, Execute) ;
SIGNAL present state, next state :@: state;
BEGIN

END ARCHITECTURE

=  Controller VHDL Code
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Controller Description

ARCHITECTURE procedural OF controller IS
BEGIN
PROCESS (clk)--Sequential

BEGIN
IF clk = '"l' AND clk'EVENT THEN
IF rst = '"l' THEN
present state <= Reset;
ELSE
present state <= next state;
END IF;
END IF;

END PROCESS;

END ARCHITECTURE

= Controller VHDIL Code (Continued)
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Controller Description

PROCESS (present state, rst) --Combinational
BEGIN
rd mem <= '0'; wr mem <= '0O'; ir on adr <= '0';
pc on adr <= '0'; dbus on data <= '0';
data on dbus <= '0'; 1d ir <= '0'; pass <= '0';
1d ac <= '0'; 1d pc <= '0'; inc pc <= '0';
clr pc <= '0'; add <= '0'; alu on dbus <= '0';
CASE present state IS
WHEN Reset =>

IF rst = 'l' THEN

next state <= Reset;
ELSE

next state <= Fetch;
END TIEF;

clr_pc <= i

= Controller VHDL Code (Continued)
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Controller Description

PROCESS (present state, rst, op code) --Combinational
BEGIN

WHEN Fetch =>
next state <= Decode;
pc on adr <= '1';
rd mem <= '1';
data on dbus <= '1';
1d ir <= '1';
inc pc <= '1';

WHEN Decode =>
next state <= Execute;

END PROCESS;

Controller VHDI. Code (Continued)
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Controller Description

WHEN Execute =>
next state <= Fetch;
CASE op code IS
WHEN "00" =>
ir on adr <= 'l'; rd mem <= '1';
data on dbus <= 'l'; 1d ac <= '1';
WHEN "01" =>

dbus on data <= '1';alu_pn_i£95<; '1';
ass <= 'l'; wr mem <= '1';

r on adr <= 'l1';

WHEN "10" =>
ld;pc <= '1"';

WHEN "11" =>
ada <= '1'; alu on dbus <= 'l1';
ld_ac = YLy

Controller VHDL Code
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Controller Description

WHEN OTHERS =>
rd mem <= '0'; pc on adr <= '0';
pass <= '0';
ir on adr <= '0'; wr mem <= '0';
1d ac <= '0';

dbus on data <= '0O';data on dbus<='0';

1d ir <= '0'; alu on dbus <= '0';

add <= '0';
inc pc <= '0'; clr pc <= '0';
1d pc <= '0';
END CASE ;
WHEN OTHERS => next state <= Reset;

END CASE;
END PROCESS;
END ARCHITECTURE ;

=  Controller VHDL Code
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The Complete Machine

ENTITY addingCPU IS
PORT (reset, clk : IN std logic;
adr bus : OUT std logic vector (5 DOWNTO O) ;
rd mem, wr mem : OUT std logic;
data bus : INOUT std logic wvector (7 DOWNTO 0)) ;
END ENTITY
ARCHITECTURE structural OF addingCPU IS
SIGNAL ir on adr, pc on adr, dbus on data : std logic;
SIGNAL data on dbus, 1d ir, 1ld ac, 1ld pc : std logic;
SIGNAL inc pc, clr pc : std logic;
SIGNAL pass, add, alu on dbus : std logic;
SIGNAL op code : std logic vector (1 DOWNTO O0) ;
BEGIN

END ARCHITECTURE

=  AddingCPU Top-level Description
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The Complete Machine

ARCHITECTURE structural OF addingCPU IS
BEGIN
CU: ENTITY WORK.Controller
PORT MAP (reset, clk, op code, rd mem,
wr mem, ir on adr, pc on adr,
dbus on data, data on dbus,
1d ir, 1d ac, 1d pc, inc pc,
clr pc, pass, add, alu on dbus ) ;
DP: ENTITY WORK.DataPath
PORT MAP (ir on adr, pc on adr, dbus on data,
data on dbus,1ld ir, 1ld ac, 1ld pc,
inc pc, clr pc, pass, add,
alu on dbus, clk, adr bus, op code,
data bus ) ;
END ARCHITECTURE ;

=  AddingCPU Top-level Description (Continued)
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Summary

= This chapter presented VHDL code and descriptions for several hatdware
components.

- Emphasized on synthesizable cotes
= Considered situations that a cote model was to be for evaluation purposes only

= We discussed:
= Individual stand-alone component descriptions
= Design pattitioning
= Putting sub-components of a system together for formation of complete
systems.
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