
Chapter 8
Hardware Cores and Models

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 1

Hardware Cores and Models

8.1 Memory and Queue Structures

8.2.1 Generic RAM Core

8.2.2 Synthesizable Push-Pop Stack

8.2.3 Synthesizable Circular FIFO

8.2.4 Dynamic Access Type FIFO

8.2 Arithmetic Cores

8.3 Components with Separate Control and Data Parts

8.4.1 Sequential Multiplier

8.4.2 von Neumann Computer Model

8.4 Summary

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 2

April 2019 3

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

CPU RAM

TIMER

CACHE

CPU

ARBITER

DMA

IO

CORDIC

MemReady

Read

Memory and Queue Structures

Memory and

Queue

Structures

Generic
RAM Core

Synthesizable

Push-Pop

Stack

Synthesizable

Circular FIFO

Dynamic

Access Type

FIFO

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 4

Generic RAM Core

Memory and

Queue

Structures

Generic
RAM Core

Synthesizable

Push-Pop

Stack

Synthesizable

Circular FIFO

Dynamic

Access Type

FIFO

Generic

RAM Core

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 5

Generic RAM Core
PROCEDURE init_mem (VARIABLE memory: OUT mem;

CONSTANT datafile: STRING) IS

FILE stddata : TEXT;

VARIABLE l : LINE;

VARIABLE data : std_logic_vector(memory'RANGE(2));

BEGIN

FILE_OPEN (stddata, datafile, READ_MODE);

FOR i IN memory'RANGE(1) LOOP

READLINE (stddata, l); READ (l, data);

FOR j IN memory'REVERSE_RANGE(2) LOOP

memory (i,j) := data(j);

END LOOP;

END LOOP;

END PROCEDURE init_mem;

 TEXTIO Based Memory init and dump Procedure

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 6

Generic RAM Core
PROCEDURE dump_mem (VARIABLE memory: IN mem;

CONSTANT datafile: STRING) IS

FILE stddata : TEXT;

VARIABLE stdvalue : std_logic;

VARIABLE l : LINE;

BEGIN

FILE_OPEN (stddata, datafile, WRITE_MODE);

FOR i IN memory'RANGE(1) LOOP

FOR j IN memory'REVERSE_RANGE(2) LOOP

stdvalue := memory (i, j);

WRITE (l, stdvalue);

END LOOP;

WRITELINE (stddata, l);

END LOOP;

END PROCEDURE dump_mem;

 TEXTIO Based Memory init and dump Procedure (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 7

Generic RAM Core
USE IEEE.std_logic_TEXTIO.ALL;

ENTITY std_logic_ram IS

PORT (address, datain : IN std_logic_vector;

dataout : OUT std_logic_vector;

cs, rwbar : IN std_logic; opr : IN BOOLEAN);

END ENTITY std_logic_ram;

--

ARCHITECTURE behavioral OF std_logic_ram IS

TYPE mem IS ARRAY (NATURAL RANGE <>,

NATURAL RANGE <>) of std_logic;

BEGIN

.

.

END ARCHITECTURE;

 Std_logic Unconstrained Memory

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 8

Generic RAM Core
PROCESS

CONSTANT memsize : INTEGER := 2**address'LENGTH;

VARIABLE memory : mem (0 TO memsize-1,

datain'RANGE);

BEGIN

id: IF opr'EVENT THEN

IF opr=TRUE THEN init_mem (memory, "memdata.dat");

ELSE dump_mem (memory, "memdump.dat"); END IF;

END IF;

wr: IF cs = '1' THEN

IF rwbar = '0' THEN -- Writing

FOR i IN dataout'RANGE LOOP

memory(conv_integer(address),i):=datain (i);

END LOOP;

.

.

 Std_logic Unconstrained Memory (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 9

Generic RAM Core

PROCESS

CONSTANT memsize : INTEGER := 2**address'LENGTH;

VARIABLE memory : mem (0 TO memsize-1,

datain'RANGE);

BEGIN

.

ELSE -- Reading

FOR i IN datain'RANGE LOOP

dataout(i)<=memory(conv_integer(address),i);

END LOOP;

END IF;

END IF;

WAIT ON cs, rwbar, address, datain, opr;

END PROCESS;

 Std_logic Unconstrained Memory (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 10

Synthesizable Push-Pop Stack

Memory and

Queue

Structures

Generic
RAM Core

Synthesizable

Push-Pop

Stack

Synthesizable

Circular FIFO

Dynamic

Access Type

FIFO

Synthesizable

Push-Pop

Stack

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 11

Synthesizable Push-Pop Stack

ENTITY stack IS

GENERIC (max: std_logic_vector := "101111");

PORT (STin : IN std_logic_vector;

clk, push, pop : IN std_logic;

opr : IN BOOLEAN;

STout : OUT std_logic_vector;

empty, full : OUT std_logic);

END ENTITY stack;

--

 Stack Controller Outline

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 12

Synthesizable Push-Pop Stack

ARCHITECTURE behavioral OF stack IS

SIGNAL ramin, ramout : std_logic_vector (STin'RANGE);

SIGNAL ramaddr, pntr : std_logic_vector (max'RANGE)

:= (OTHERS => '0');

SIGNAL cs, rwbar, full_temp : std_logic:= '0';

SIGNAL empty_temp : std_logic:= '1';

BEGIN

-- UPDATING PNTR

-- POP/PUSH

-- INSTANTIATE MEMORY

-- HANDLING EMPTY AND FULL

END ARCHITECTURE behavioral;

 Stack Controller Outline (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 13

Synthesizable Push-Pop Stack
-- UPDATING PNTR

Update_pntr: PROCESS (clk)

BEGIN

IF (clk = '1' AND clk'EVENT) THEN

IF pop = '1' THEN

IF empty_temp /= '1' THEN

pntr <= pntr - 1;

END IF;

ELSIF push = '1' THEN

IF full_temp /= '1' THEN

pntr <= pntr + 1;

END IF;

END IF;

END IF;

END PROCESS;

 Stack Pointer Update

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 14

Synthesizable Push-Pop Stack

-- POP/PUSH

pop_push: PROCESS (pop, push ,STin, ramout, pntr)

BEGIN

ramaddr <= (OTHERS => '0');

cs <= '0';

rwbar <= '1';

ramin <= (OTHERS => '0');

STout <= (STin'RANGE => '0');

IF (pop = '1' AND empty_temp = '0') THEN

ramaddr <= pntr - 1;

cs <= '1';

rwbar <= '1';

STout <= ramout;

. . .

 Pop_push Process

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 15

Synthesizable Push-Pop Stack

-- POP/PUSH

pop_push: PROCESS (pop, push ,STin, ramout, pntr)

BEGIN

.

.

ELSIF (push = '1' AND full_temp = '0') THEN

ramaddr <= pntr;

cs <= '1';

rwbar <= '0';

ramin <= STin;

END IF;

END PROCESS pop_push;

 Pop_push Process (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 16

Synthesizable Push-Pop Stack

-- INSTANTIATE MEMORY

UU1: ENTITY WORK.std_logic_ram (behavioral)

PORT MAP (ramaddr, ramin, ramout, cs, rwbar, opr);

-- HANDLING EMPTY AND FULL

empty_temp <= '1' WHEN (pntr = (pntr'RANGE => '0')) ELSE '0';

full_temp <= '1' WHEN (pntr = max) ELSE '0';

empty <= empty_temp;

full <= full_temp;

 RAM Instantiation and empty and full Flags

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 17

Synthesizable Circular FIFO

Memory and

Queue

Structures

Generic
RAM Core

Synthesizable

Push-Pop

Stack

Synthesizable

Circular FIFO

Dynamic

Access Type

FIFO

Synthesizable

Circular FIFO

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 18

Synthesizable Circular FIFO

 Circular FIFO

Full

Read

Pointer
Write

Pointer

Write

Pointer
Read

Pointer

Write

Pointer

Read

Pointer

EmptyCan read or write

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 19

Synthesizable Circular FIFO

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_unsigned.ALL;

ENTITY fifo_unconst IS

GENERIC (fifo_size : std_logic_vector := "1000");

PORT (data_in : IN std_logic_vector;

clk : IN std_logic;

rst, rd, wr : IN std_logic;

empty, full : OUT std_logic;

data_out : OUT std_logic_vector);

END ENTITY ;

--

 FIFO VHDL Code Outline

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 20

Synthesizable Circular FIFO

 FIFO VHDL Code Outline (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 21

ARCHITECTURE procedural OF fifo_unconst IS

CONSTANT fsz : INTEGER := conv_integer (fifo_size);

CONSTANT asz : INTEGER := fifo_size'LENGTH - 1;

CONSTANT wsz : INTEGER := data_in'LENGTH; --word_size;

TYPE memory IS ARRAY (NATURAL RANGE <>) OF std_logic_vector (wsz-1 DOWNTO 0);

SIGNAL fifo_ram : memory (0 TO fsz-1);

SIGNAL rd_ptr, wr_ptr:std_logic_vector(asz-1 DOWNTO 0) := (OTHERS => '0');

SIGNAL full_temp, empty_temp : std_logic;

BEGIN

END ARCHITECTURE;

Synthesizable Circular FIFO

ARCHITECTURE procedural OF fifo_unconst IS

.

.

BEGIN

-- WRITE

-- READ

-- POINTER

empty_temp <= '1' WHEN (rd_ptr=wr_ptr) ELSE '0';

full_temp <= '1' WHEN (rd_ptr=wr_ptr + 1) ELSE '0';

empty <= empty_temp;

full <= full_temp;

END ARCHITECTURE;

 FIFO VHDL Code Outline (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 22

Synthesizable Circular FIFO

 FIFO Block Diagram

rd_ptr

wr_ptr

clk

data_in

fifo

rd

wr

w
rite

full

empty

re
a

d

data_out

rst

p
o

in
te

r

empty

full

fifo
_
ra

m

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 23

Synthesizable Circular FIFO

Synthesizable

Circular FIFO

Clocked

Memory

Writing

Clocked

Memory

Reading

Multiple Clocked

Register

Process

Clocked

Memory

Writing

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 24

Clocked Memory Writing

write : PROCESS (clk) BEGIN

IF (clk='1' AND clk'EVENT) THEN

IF (wr='1' AND full_temp='0') THEN

fifo_ram (conv_integer (wr_ptr)) <= data_in;

ELSIF (wr='1' AND rd='1') THEN

fifo_ram (conv_integer (wr_ptr)) <= data_in;

END IF;

END IF;

END PROCESS;

 Clocked Writing: fifo_ram

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 25

Clocked Memory Reading

Synthesizable

Circular FIFO

Clocked

Memory

Writing

Clocked

Memory

Reading

Multiple Clocked

Register

Process

Clocked

Memory

Reading

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 26

Clocked Memory Reading

read : PROCESS (clk) BEGIN

IF (clk='1' AND clk'EVENT) THEN

IF (rd='1' AND empty_temp='0') THEN

data_out <= fifo_ram (conv_integer (rd_ptr));

ELSIF (rd='1' AND wr='1' AND empty_temp='1') THEN

data_out <= fifo_ram (conv_integer (rd_ptr));

END IF;

END IF;

END PROCESS;

 Clocked Reading: fifo_ram

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 27

Multiple Clocked Register Process

Synthesizable

Circular FIFO

Clocked

Memory

Writing

Clocked

Memory

Reading

Multiple Clocked

Register

Process

Multiple Clocked

Register

Process

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 28

Multiple Clocked Register Process

pointer : PROCESS (clk) BEGIN

IF (clk='1' AND clk'EVENT) THEN

IF rst='1' THEN

wr_ptr <= (OTHERS => '0');

rd_ptr <= (OTHERS => '0');

ELSE

.

.

.

END IF;

END IF;

END PROCESS;

 Updating FIFO Pointers

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 29

Multiple Clocked Register Process

.

ELSE

IF (wr='1' AND full_temp='0') OR (wr='1' AND rd='1') THEN

wr_ptr <= wr_ptr+1;

ELSE

wr_ptr <= wr_ptr;

END IF;

IF (rd='1' AND empty_temp='0') OR (wr='1' AND rd='1') THEN

rd_ptr <= rd_ptr+1;

ELSE

rd_ptr <= rd_ptr;

END IF;

END IF;

 Updating FIFO Pointers (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 30

Dynamic Access Type FIFO

Memory and

Queue

Structures

Generic
RAM Core

Synthesizable

Push-Pop

Stack

Synthesizable

Circular FIFO

Dynamic

Access Type

FIFO

Dynamic

Access Type

FIFO

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 31

Dynamic FIFO Structure

TYPE fifo_element;

TYPE pointer IS ACCESS fifo_element;

TYPE fifo_element IS RECORD

data : std_logic_vector (7 DOWNTO 0);

link : pointer;

END RECORD;

SHARED VARIABLE head, tail : pointer :=

NULL;

Dynamic FIFO Structure

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 34

Different Hardware Levels

 Arithmetic Cores

 Wrappers

 Interfaces

 CPUs

 All applications may not fit this categorization

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 44

Arithmetic Cores

 Completely independent from connection handling

 Can be used as embedded cores in embedded designs

 Carry Lookahead Adder

 Sequential Multiplier

 Booth Multiplier

 Sinh of x

 FIR filter

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 45

Arithmetic Cores

Arithmetic

Cores

Adders

Dividers

And

Multipliers

Trigonometric

And Hyperbolic

Functions

Filters

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 46

Adders

Adders

Ripple-Carry

Adder

Carry

Lookahead

Adder

Carry Skip

and

Carry Select

Adders

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 47

One-bit Full-Adder Circuit

ai

bi

ci

sumi

Ci+1

FAi

sumi = ai xor bi xor ci

ci+l = ai bi + bi ci + ai ci

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 48

Ripple-Carry Adder

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 49

Carry Lookahead Adders
X0 Y0X1 Y1

Sum1 Sum0

C0

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 53

Group Propagate (PG) and Group Generate

(GG) for an 8-bit CLA

 Ripple carry between blocks

 Carry look ahead inside blocks

8

88

C8 C0

8

88

C16

8

88

C24

8

88

C32

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 55

Carry-Select Adder

16-bit

RCA

a0-a15

b0-b15

cin

sum0-sum15

16-bit

RCA

a16-a31

b16-b31

0

16-bit

RCA

a16-a31

b16-b31

1
M

u
lt

ip
le

x
e

r

sum16-sum31

0

1

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 60

Arithmetic Cores

Arithmetic

Cores

Adders
Trigonometric

Functions
Filters

Dividers

And

Multipliers

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 62

Multiplication

 Sequential Multiplier

 Array Multiplier

 Booth Multiplier

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 63

Array Multiplier

 Figure circuit multiplies its xi and

yi inputs using the AND gate that

is marked with a dot

 Adds this result with its input

partial product pi, using its carry

input ci.

 This cell generates a partial

product po, a carry output co, and

passes xi and yi inputs on to its

outputs (xo and yo).

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 64

Array Multiplier

 4×4 array multiplier that uses 16 of

the multiplier cells.

 A 32-bit multiplier requires 1024

such cells.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 65

Shift-and-add Multiplication Process

0 0 00P: 0 0 11A:

1 0 11B:

t = 0

1 1 00 1 0 01

1 0 11

t = 1 0 0 0 0 + 1 1 0 1 0 1 1 0 1

0 1 10 1 1 00

1 0 11

t = 2 0 1 1 0 + 0 0 0 0 0 0 1 1 0

0 0 10 0 1 11

1 0 11

t = 3 0 0 1 1 + 0 0 0 0 0 0 0 1 1

1 1 10 1 0 10

1 0 11

t = 4 0 0 0 1 + 1 1 0 1 0 1 1 1 0

A and B

Result

 Hardware Oriented Multiplication Process

Put A in a shift-register, always

observe its right-most bit, and

after every calculation, we move

it one place to the right, making

its next bit accessible.

For the partial products, instead

of writing one and the next one

to its left, we move the partial

product to the right as we are

writing it.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 71

Shift-and-add Multiplication Process

 Hardware Oriented Multiplication Process (Continued)

0 0 00P: 0 0 11A:

1 0 11B:

t = 0

A and B

Because A[0] is 1, the partial

sum of B + P is calculated.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 72

Shift-and-add Multiplication Process

 Hardware Oriented Multiplication Process (Continued)

1 1 00 1 0 01

1 0 11

t = 1 0 0 0 0 + 1 1 0 1 0 1 1 0 1

0 1 10 1 1 00

1 0 11

t = 2 0 1 1 0 + 0 0 0 0 0 0 1 1 0

The right most bit of

which is shifted into A,

and the rest replace P

The right most bit of this

partial sum is shifted into

the A register.

Because A[0] is 0,

0000 + P is calculated

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 73

Shift-and-add Multiplication Process

 Hardware Oriented Multiplication Process (Continued)

0 0 10 0 1 11

1 0 11

t = 3 0 0 1 1 + 0 0 0 0 0 0 0 1 1

1 1 10 1 0 10

1 0 11

t = 4 0 0 0 1 + 1 1 0 1 0 1 1 1 0

Result

The least significant 4 bits of

the multiplication result

become available in A and the

most-significant bits in P.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 74

Sequential Multiplier Design

Sequential

Multiplier

Shift-and-add

Multiplication

Process

Sequential

Multiplier

Design

Sequential

Multiplier

Design

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 75

Sequential Multiplier

 Multiplier Block Diagram

start

clk

lsb_out

done

msb_out

databus

Multiplier

8

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 76

Sequential Multiplier

0 0 00P: 0 0 11A:

1 0 11B:

t = 0

1 1 00 1 0 01

1 0 11

t = 1 0 0 0 0 + 1 1 0 1 0 1 1 0 1

0 1 10 1 1 00

1 0 11

t = 2 0 1 1 0 + 0 0 0 0 0 0 1 1 0

0 0 10 0 1 11

1 0 11

t = 3 0 0 1 1 + 0 0 0 0 0 0 0 1 1

1 1 10 1 0 10

1 0 11

t = 4 0 0 0 1 + 1 1 0 1 0 1 1 1 0

A and B

Result

 Hardware Oriented Multiplication Process

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 77

Sequential Multiplier

Sequential

Multiplier

Sequential
Multiplier

Design

Sequential
Multiplier
Datapath

Multiplier
Controller

Top-level
Multiplier

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 78

Sequential Multiplier Design

Sequential

Multiplier

Sequential
Multiplier

Design

Sequential
Multiplier
Datapath

Multiplier
Controller

Top-level
Multiplier

Sequential

Multiplier

Design

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 79

Sequential Multiplier Design

 Datapath and Controller

Datapath
databus

8

clr_P

load_P

load_B

msb_out

lsb_out

sel_sum

load_A

shift_A

start

lsb_out

msb_out

done

A0

Controller

clk

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 80

Sequential Multiplier Design

 Multiplier Block Diagram

sel_sum
co

sumB

data

load_B

clk

clr_P

load_P

A0

AP

load_A

msb_out

lsb_out

shift_A

ShiftAdd[0]

S
h

iftA
d

d

Register

B

Shift-

Register

A

8-bit

Adder

PartialResult

Register

8-bit

Multiplexer

8
-b

it T
ri-S

ta
te

8
-b

it T
ri-S

ta
te

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 81

Sequential Multiplier Datapath

Sequential

Multiplier

Sequential
Multiplier

Design

Sequential
Multiplier
Datapath

Multiplier
Controller

Top-level
Multiplier

Sequential

Multiplier

Datapath

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 82

Sequential Multiplier Datapath
ENTITY datapath IS

PORT (clk, clr_P, load_P, load_B : IN std_logic;

msb_out, lsb_out, sel_sum : IN std_logic;

load_A, shift_A : IN std_logic;

data : INOUT std_logic_vector (7 DOWNTO 0);

A0 : OUT std_logic);

END ENTITY;

--

ARCHITECTURE procedural OF datapath IS

SIGNAL sum, ShiftAdd : std_logic_vector (7 DOWNTO 0);

SIGNAL A, B, P : std_logic_vector (7 DOWNTO 0);

SIGNAL co : std_logic;

SIGNAL op : std_logic_vector (1 DOWNTO 0);

SIGNAL result : std_logic_vector (8 DOWNTO 0);

.

END ARCHITECTURE procedural;

 Shift-and-add Multiplier Datapath

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 83

Sequential Multiplier Datapath
PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

IF (load_B = '1') THEN B <= data;

END IF;

END IF;

END PROCESS;

--

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

IF (load_P = '1') THEN

P <= (co AND sel_sum) & ShiftAdd (7 DOWNTO 1);

END IF;

END IF;

END PROCESS;

--

 Shift-and-add Multiplier Datapath (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 84

Sequential Multiplier Datapath

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

CASE op IS

WHEN "01" => A <= ShiftAdd(0) &

A(7 DOWNTO 1);

WHEN "10" => A <= data;

WHEN OTHERS => A <= A;

END CASE;

END IF;

END PROCESS;

.

 Shift-and-add Multiplier Datapath (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 85

Sequential Multiplier Datapath

.

result <= ('0'&P) + ('0'&B);

co <= result(8);

sum <= result(7 DOWNTO 0);

A0 <= A(0);

ShiftAdd <= (OTHERS => '0') WHEN clr_P = '1' ELSE

P WHEN sel_sum = '0' ELSE sum;

data <= A WHEN lsb_out = '1' ELSE (OTHERS => 'Z');

data <= P WHEN msb_out = '1' ELSE (OTHERS => 'Z');

op <= load_A & shift_A;

END ARCHITECTURE procedural;

 Shift-and-add Multiplier Datapath (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 86

Multiplier Controller

Sequential

Multiplier

Sequential
Multiplier

Design

Sequential
Multiplier
Datapath

Multiplier
Controller

Top-level
Multiplier

Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 87

Multiplier Controller

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_unsigned.ALL;

ENTITY controller IS

PORT (clk, start, A0 : IN std_logic;

clr_P, load_P, load_B : OUT std_logic;

msb_out, lsb_out, sel_sum : OUT std_logic;

load_A, Shift_A, done : OUT std_logic);

END ENTITY;

--

 Multiplier Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 88

Multiplier Controller
ARCHITECTURE procedural OF controller IS

TYPE state IS (idle, init,

m1, m2, m3, m4, m5, m6, m7, m8,

rslt1, rslt2);

SIGNAL current : state;

BEGIN

sequential: PROCESS (clk) BEGIN

IF (clk = '0' AND clk'EVENT) THEN

CASE current IS

WHEN idle =>

IF start = '0' THEN current <= idle;

ELSE

current <= init;

END IF;

.

END PROCESS; --

 Multiplier Controller (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 89

Multiplier Controller
sequential: PROCESS (clk) BEGIN

IF (clk = '0' AND clk'EVENT) THEN

CASE current IS

.

WHEN init =>

current <= m1;

WHEN m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8

=>

current <= state'SUCC(current);

WHEN rslt1 =>

current <= rslt2;

WHEN rslt2 =>

current <= idle;

WHEN OTHERS =>

current <= idle;

END CASE;

 Multiplier Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 90

Multiplier Controller
sequential: PROCESS (clk) BEGIN

.

END PROCESS; --

combinational: PROCESS (current, start, A0) BEGIN

clr_P <= '0'; load_P <= '0';

load_B <= '0';

msb_out <= '0'; lsb_out <= '0';

sel_sum <= '0'; load_A <= '0';

Shift_A <= '0'; done <= '0';

CASE current IS

WHEN idle =>

IF start = '0' THEN

done <= '1';

ELSE

load_A <= '1';

clr_P<= '1';

load_P <= '1';

END IF;

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 91

Multiplier Controller
combinational: PROCESS (current, start, A0) BEGIN

CASE current IS

.

WHEN init =>

load_B <= '1';

WHEN m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8

=>

Shift_A <= '1';

load_P <= '1';

IF (A0 = '1') THEN

sel_sum <= '1';

END IF;

WHEN rslt1 =>

lsb_out <= '1';

WHEN rslt2 =>

msb_out <= '1';

 Multiplier Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 92

Multiplier Controller

combinational: PROCESS (current, start, A0) BEGIN

CASE current IS

.

WHEN rslt2 =>

msb_out <= '1';

WHEN OTHERS =>

clr_P <= '0'; load_P <= '0';

load_B <= '0'; msb_out <= '0';

lsb_out <= '0'; sel_sum <= '0';

load_A <= '0'; Shift_A <= '0';

done <= '0';

END CASE;

END PROCESS;

END ARCHITECTURE procedural;

 Multiplier Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 93

Top-level Multiplier

Sequential

Multiplier

Sequential
Multiplier

Design

Sequential
Multiplier
Datapath

Multiplier
Controller

Top-level
Multiplier
Top-Level

Multiplier

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 94

Top-level Multiplier

ENTITY Multiplier IS

PORT (clk, start : IN std_logic;

databus : INOUT std_logic_vector (7 DOWNTO 0);

lsb_out, msb_out, done : OUT std_logic);

END ENTITY;

--

ARCHITECTURE structural OF Multiplier IS

SIGNAL clr_P, load_P, load_B, msb_out_t, A0 : std_logic;

SIGNAL lsb_out_t, sel_sum, load_A, Shift_A : std_logic;

BEGIN

.

.

END ARCHITECTURE structural;

 Top-level Multiplier Module

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 95

Top-level Multiplier

ARCHITECTURE structural OF Multiplier IS

BEGIN

dpu : ENTITY WORK.datapath(procedural)

PORT MAP (clk, clr_P, load_P, load_B,

msb_out_t, lsb_out_t, sel_sum,

load_A, Shift_A, databus, A0);

cu : ENTITY WORK.controller(procedural)

PORT MAP (clk, start, A0, clr_P, load_P, load_B,

msb_out_t, lsb_out_t, sel_sum,

load_A, Shift_A, done);

msb_out <= msb_out_t;

lsb_out <= lsb_out_t;

END ARCHITECTURE structural;

 Top-level Multiplier Module (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 96

Booth Multiplier

 Booth algorithm is for signed number multiplication.

 The algorithm is similar to the sequential multiplication shift-and-
add algorithm, except that two bits, instead of only one bit, will be
considered for making shift, add, and subtract decisions.

 An extra bit (initially 0) is added to the right of A, and decisions
for adding B to the partial product (P+B) and shifting, subtracting
B from the partial product (P-B and shifting, or just shifting the
partial product will be based on the right-most two bits of the
extended A.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 97

Booth Multiplier- Example
A×B

B=01101101

A=10110110

A is a negative number.

A: 101101100 : +0 × 20 = 000

101101100 : -1 × 21 = -002

101101100 : -0 × 22 = 000

101101100 : +1 × 23 = +008

101101100 : -1 × 24 = -016

101101100 : -0 × 25 = 000

101101100 : +1 × 26 = +064

101101100 : -1 × 27 = -128

-074

A×B= (B× +000) + (B× -002) + (B× -000) + (B× +008) +

(B×-016) + (B× -000) + (B× +064) + (B× -128)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 98

Booth Multiplier

Booth

Multiplier

Multiplication

Process

Booth

Multiplier

Design

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 99

 Initialization:

 Two registers Mcand containing first operand and P containing the result

Mcand is 32-bit and P is 65-bit register

 Mcand = A, P = {32’b0, B, 1’b0}

 step1: Check the two lowest bits of P

11 or 00: go to step 3.

01 or 10: go to step 2

 step2:

 LSBs of P: 01 => Mcand is added to the most 32 bits of P.

 LSBs of P: 10 => Mcand is subtracted from the most 32 bits of P.

 step3: Shift P one place to the right

 End of Multiplication: P[64:1] contains the result.

Multiplication Process

32 times

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 100

0111 0 0 0 0Mcand 0 0 1 1 0P:

B

t = 0

t = 1

0000 – 1110 = 0010

0111

0 0 0 0

Mcand

0 0 1 1 0P:

0 0 1 0 0 0 1 1 0P:

0 0 0 1 0 0 0 1 1P:

t = 2
0111

0 0 0 1

Mcand

0 0 0 1 1P:

0 0 0 0 1 0 0 0 1P:

t = 3

0000 + 1110 = 1110

0111

0 0 0 0

Mcand

1 0 0 0 1P:

1 1 1 0 1 0 0 0 1P:

1 1 1 1 0 1 0 0 0P:

t = 4

0111

1 1 1 1

Mcand

0 1 0 0 0P:

1 1 1 1 1 0 1 0 0P:

A

 Hardware Oriented Multiplication Process (continued)

P[1:0] is 11 and 00, P

is shifted to right. Mcand is subtracted from

P[64:33] because P[1:0] is 10.

Inputs A and B are

loaded into the registers

Mcand is added to P[64:33]

because P[1:0] is 01.

Multiplication Process

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 104

A = (-2) B = 3

A×B = ?

0111 0 0 0 0Mcand: 0 0 1 1 0P:

B

t = 0

A

 Hardware Oriented Multiplication Process (Continued)

Register Mcand is

initialized by A.

Register P will

contain the result in

the final step.

Register P is initialized

by {4’b0, B, 1’b0}.

Multiplication Process

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 105

t = 1

0000 – 1110 = 0010

0111

0 0 0 0

Mcand

0 0 1 1 0P:

0 0 1 0 0 0 1 1 0P:

0 0 0 1 0 0 0 1 1P:

 Hardware Oriented Multiplication Process (Continued)

First, we check the two

LSBs of P.

Third, we shift P one place

to right.

Multiplication Process

Second, because P[1:0] is 10,

we subtract Mcand from

higher part of P.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 106

t = 2

0111

0 0 0 1

Mcand

0 0 0 1 1P:

0 0 0 0 1 0 0 0 1P:

 Hardware Oriented Multiplication Process (Continued)

First, we check the two LSBs

of P.

Multiplication Process

Second, because P[1:0] is 11,

we only need to shift P to right.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 107

t = 3

0000 + 1110 = 1110

0111

0 0 0 0

Mcand

1 0 0 0 1P:

1 1 1 0 1 0 0 0 1P:

1 1 1 1 0 1 0 0 0P:

 Hardware Oriented Multiplication Process (Continued)

First, we check the two LSBs

of P.

Third, we shift P one place

to right.

Multiplication Process

Second, because P[1:0] is 01, we

add Mcand to upper 32 bits of P.

The MSB is one due to

performing signed shift on P

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 108

t = 4

0111

1 1 1 1

Mcand

0 1 0 0 0P:

1 1 1 1 1 0 1 0 0P:

Hardware Oriented Multiplication Process

First, we check the two LSBs

of P.

Multiplication Process

Second, because P[1:0] is 00, we

only need to shift P to right.

The MSB is one due to

performing signed shift on P

The final result is now on

the P[64:1].

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 109

Booth Multiplier

Booth

Multiplier

Multiplication

Process

Booth

Multiplier

Design

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 110

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 111

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 112

Control Data Partitioning

Datapath

32

Set_P

load_P

shift_P

sel_SumSub

start

done

P10

load_M

32

64

A

B

product

Controller

 Datapath and Controller

Data part consists of

registers, logic units, and

their interconnecting buses.

The controller is a state

machine that issues control

signals for control of what gets

clocked into the data registers.Triggered with the

same clock signal

On the rising edge of the

system clock, the controller

goes into a new state.

In each new state, several

control signals are issued, and

the components of the datapath

start reacting to these signals.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 113

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 114

+

sel_SumSub

sum

Mcand
A

load_M

clk

load_P

P

A
d

d
R

e
s
u

lt -
sub

shift_P

B

P[64]

Set_P

Product

P
[3

2
:0

]
P

[6
4

:3
3

]

P
[1

:0
]

P10{32'h00000000,B,1'b0}

Multiplier Datapath

 Multiplier Block Diagram

32-bit register

Adder/Subtractor

Multiplexer

Selects P[64:33] + Mcand or

P[64:33] - Mcand depending

on the value of sel_SumSub

65-bit shift register

Two LSB of P

to determine

next step

To load P with

initial data or

partial product

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 115

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 116

Datapath Description

 Datapath Code

ENTITY datapath is

PORT(clk, Set_P, load_M, load_P,

shift_P, preset, sel_SumSub : IN std_logic;

A, B : IN std_logic_vector (31 downto 0);

Product : OUT std_logic_vector (63 downto 0);

P10 : OUT std_logic_vector (1 downto 0));

END ENTITY;

ARCHITECTURE procedural OF datapath IS

SIGNAL sum, sub, AddResult, Mcand : std_logic_vector (31 downto 0);

SIGNAL data, P : std_logic_vector (64 downto 0);

SIGNAL ls : std_logic_vector (1 downto 0);

BEGIN

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 117

Datapath Description

 Datapath Code (continued)

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

IF (load_M = '1') THEN Mcand <= A;

END IF;

END IF;

END PROCESS;

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

CASE (ls) IS

WHEN "01" => P <= P(64) & P(64 DOWNTO 1);

WHEN "10" => P <= data;

WHEN OTHERS => P <= P;

END CASE;

END IF;

END PROCESS;

...............................

Implements the

65-bit shift-register for keeping

the result and partial products

Represents

32-bit register

Mcand for

keeping input

A

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 118

Datapath Description

 Datapath Code (continued)

Two LSB of P going to

controller to determine the

next step

The final result will be

placed on the Product

Iinitial data or

intermediate data

going to P based on

Set_P

sel_SumSub selects sum or

sub to store in the P

The Mcand is added or

subtracted to/from

upper 32 bits of P

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 119

P10 <= P(1 downto 0);

sum <= P(64 downto 33) + Mcand;

sub <= P(64 downto 33) - Mcand;

AddResult <= sum WHEN sel_SumSub = '1' ELSE sub;

data <= ((“00000000000000000000000000000000”) & B & '0') WHEN Set_P = '1'

ELSE (AddResult & P(32 downto 0)) ;

Product <= P(64 downto 1);

ls <= load_P & shift_P;

END ARCHITECTURE procedural;

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 120

States of Multiplier

Multiplier Controller

 Multiplier Control States

Multiplier waits for

start while loading M and P

Multiplier shifts P one

place to right

idle

Check_2bits

Sum_Sub

Shift

Checking 2 LSB of P to

specify the next step

Multiplier adds or

subtracts Mcand to/from

P[64:33] based on P10

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 121

Multiplier Controller

 Controller Code

States of multiplier

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 122

ENTITY controller IS PORT (clk, start : IN std_logic;

P10 : IN std_logic_vector (1 downto 0);

Set_P, load_M, load_P : OUT std_logic;

shift_P, sel_SumSub, done : OUT std_logic);

END ENTITY;

ARCHITECTURE procedural OF controller IS

TYPE state IS (idle, Check_2bits, Sum_Sub, Shift);

SIGNAL current, nextState : state;

SIGNAL CntValue : std_logic_vector (5 downto 0);

SIGNAL preset, cntEn, cntZero : std_logic;

BEGIN

...............................

PROCESS (clk) BEGIN

IF(clk = '0' AND clk'EVENT) THEN

IF (preset = '1') THEN

CntValue <= "100000";

ELSE

IF (cntEn = '1') THEN

CntValue <= CntValue - 1;

ELSE

CntValue <= CntValue;

END IF;

END IF;

END IF;

END PROCESS;

cntZero <= '1' WHEN (CntValue = "000000") ELSE '0';

...............................

Multiplier Controller

 Controller Code

Implements the

6-bit down counter for counting

number of steps

Indicates that if all

steps are done

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 123

Multiplier Controller

 Controller Code (continued)

All control signal outputs

are set to their inactive values.

Process block to issue

control signals and make

state transitions

To initialize P register

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 124

To load Mcand

To preset the counter to

32

If P10 is 01, sel_SumSub is

one, indicating that Mcand

should be added to upper

bits of P

If P10 is 10, sel_SumSub

remains zero, indicating

that Mcand should be

subtracted from upper bits

of P

PROCESS (current, start, P10) BEGIN

Set_P <= '0'; load_M <= '0'; load_P <= '0';

shift_P <= '0'; sel_SumSub <='0'; cntEn <= '0';

done <= '0'; preset <= '0';

CASE (current) IS

WHEN idle =>

IF (start = '0') THEN

done <= '1';

ELSE

Set_P <= '1'; load_P <= '1';

load_M <= '1'; preset <= '1';

END IF;

WHEN Sum_Sub =>

IF (P10 = "01") THEN

load_P <= '1'; sel_SumSub <= '1';

ELSIF (P10 = "10") THEN

load_P <= '1';

END IF;

WHEN Shift =>

cntEn <= '1';

shift_P <= '1';

WHEN OTHERS =>

Set_P <= '0'; load_M <= '0'; load_P <= '0';

shift_P <= '0'; sel_SumSub <='0'; cntEn <= '0';

done <= '0'; preset <= '0';

END CASE;

END PROCESS;

Multiplier Controller

 Controller Code (continued)

P will be shifted to the right and

counter will count down, showing that

one step is done.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 125

Multiplier Controller

 Controller Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 126

Another always block

for state transition

If P10 is 11 or 00, P should

only be shifted, otherwise,

Mcand should be added or

subtracted to/from it before

shifting operation.
To check the number

of multiplication steps

PROCESS (current, start, P10, cntZero) BEGIN

CASE (current) IS

WHEN idle =>

IF (start = '0') THEN

nextState <= idle;

ELSE

nextState <= Check_2bits;

END IF;

WHEN Check_2bits =>

IF (cntZero = '0') THEN

IF (P10 = "00" or P10 = "11") THEN

nextState <= Shift;

ELSIf(P10 = "10" or P10 = "01") THEN

nextState <= Sum_Sub;

END IF;

ELSE

nextState <= idle;

END IF;

WHEN Sum_Sub =>

nextState <= Shift;

WHEN Shift =>

nextState <= Check_2bits;

END CASE;

END PROCESS;

PROCESS(clk) BEGIN

IF(clk = '1' and clk'event) THEN

current <= nextState;

END IF;

END PROCESS;

END ARCHITECTURE procedural;

Multiplier Controller

 Controller Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 127

Booth Multiplier Design
Booth Multiplier

Design

Top-Level Code

of the Multiplier

Control Data

Partitioning

Booth Multiplier

Datapath

Datapath

Description

Booth Multiplier

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 128

Booth Multiplier

VHDL Implementation
ENTITY booth_mult IS

PORT (mc, mp : IN std_logic_vector (7 downto 0);

clk, start : IN std_logic;

prod : OUT std_logic_vector (15 downto 0);

busy : OUT boolean);

END ENTITY booth_mult;

ARCHITECTURE behavioral OF booth_mult IS

SIGNAL A, M : std_logic_vector (mc'RANGE);

SIGNAL Q : std_logic_vector (mc'LENGTH DOWNTO 0);

SIGNAL sum, dif : std_logic_vector(mc'RANGE);

SUBTYPE cnt IS INTEGER RANGE 0 TO mc'LENGTH;

SIGNAL count : cnt := 0;

BEGIN

.

END ARCHITECTURE behavioral;

 Booth Algorithm VHDL Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 129

Booth Multiplier

VHDL Implementation
BEGIN

sum <= A + M;

dif <= A - M;

prod <= A & Q (mc'LENGTH DOWNTO 1);

busy <= (count < mc'LENGTH);

Counter: PROCESS (clk) BEGIN

IF (clk = '1' AND clk'EVENT) THEN

IF (start = '1') THEN count <= 0;

ELSIF (count < mc'LENGTH) THEN count<= count + 1;

END IF;

END IF;

END PROCESS;

.

END ARCHITECTURE behavioral;

 Booth Algorithm VHDL Code (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 130

Booth Multiplier

VHDL Implementation

RegClocking: PROCESS (clk) BEGIN

IF (clk = '1' AND clk'EVENT) THEN

IF (start = '1') THEN

A <= (OTHERS => '0');

M <= mc;

Q <= mp & '0';

ELSIF (count < mc'LENGTH) THEN

.

.

END IF;

END IF;

END PROCESS;

 Booth Algorithm VHDL Code (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 131

Booth Multiplier

VHDL Implementation
.

ELSIF (count < mc'LENGTH) THEN

CASE Q(1 DOWNTO 0) IS

WHEN "01" => --ADD AND SHIFT

Q <= sum(0) & Q(Q'LEFT DOWNTO 1);

A <= sum(sum'LEFT) &

sum(sum'LEFT DOWNTO 1);

WHEN "10" => --SUBTRACT AND SHIFT

Q <= dif(0) & Q(Q'LEFT DOWNTO 1);

A <= dif(dif'LEFT) &

dif(dif'LEFT DOWNTO 1);

WHEN OTHERS => --SHIFT ONLY

Q <= A(0) & Q(Q'LEFT DOWNTO 1);

A <= A(A'LEFT) & A(A'LEFT DOWNTO 1);

END CASE;

END IF;

END IF;

END PROCESS;

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 132

Handshaking

 Completely independent from data handling

 Wrappers and Interfacing Utilities help to implement handshaking

 Simple handshaking

 Register file

 Data 32-bit block

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 162

Types of handshaking

 Handshaking between two systems

 Handshaking for accessing a shared bus

 Memory handshaking

 DMA mode or burst mode

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 163

Why Handshaking

 Two systems want to communicate data and they don’t

necessarily have the same timing

 The systems have to send some signals before the actual data is

transmitted

 Handshaking implementation is a part of the control of the

system

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 164

Between Two Systems Handshaking

 Each system has its own clocking

 They have to have certain signals to talk

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 165

Fully Responsive Handshaking

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 166

Fully Responsive Handshaking

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 167

Handshaking for Accessing a Shared Bus

 Using an arbiter to assure that

none of the systems will

simultaneously access the shared

bus

 Each system has to have its own

request and grant signals

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 168

Two Level Handshaking

 Assume that system A wants to send some data to B through a

shared bus

 At first A should talk to the arbiter and catches the bus by issuing

a request

 Once it puts the data on bus it informs system B by issuing ready

 After data is picked up by B, A removes its request

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 169

Two level handshaking

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 170

Handshaking Type Three:

memory handshaking

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 171

Combining Type Two and Three of

Handshaking

 We can combine type two and three of handshaking

 At first A should deal with arbiter and gets the permission of

using the bus

 Then it should send signals to the memory and waits for

memready

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 172

Handshaking Type Four:

DMA Mode Or Burst Mode

 Burst writing or DMA writing or block writing

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 173

Memory Interface: Design Example

Interface Memory

DataBus32

ReadData32

addrBus16

memResdy32

Data8

readData8

addr18

memReady8

grant request

832

1816

System

A

Arbiter

April 2019 VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi
174

Memory Interface: Datapath & Controller Partitioning

datareg3 datareg2 datareg1 datareg0

DCD
2-4

Counter
2-bit

Addrreg 16-bit

en

0
1

8

8888

2

216

18

32

ldd0
ldd1

ldd2
ldd3

co

inc

rst2
16

ldaddr

rst

ldden

addr18

dataBus32

addrBus16

data8

clk

clk

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 175

Memory Interface: State Machine

L
d

A
d

d
r

rs
t2

R
eq

u
es

t

re
ad

D
at

a8

L
d

d
en

in
c

m
em

R
ea

d
y3

2

R
e
g

is
te

r

re
ad

D
at

a3
2

G
ra

n
t

m
em

R
ea

d
y8

co

Combinational

Part

clk rst

GetDataWaiting

no
control
signals

readMem

readData8=1
request=1

deliverData

memReady32=1

GetBus

request = 1

readData32 = 0

readData32 = 1

grant = 0

grant = 1

oneByte

Ldden=1
request=1
Inc=1

memReady8 = 0

memReady8=1

co=0

co=1

readData32=1

readData32=0

LdAddr = 1
rst2 = 1

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 176

Exponential Module

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 178

Exponential Module

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 179

Exponentiation Module

ResultIntegerPart

ResultFractionPart

done

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 180

Exponential Function Algorithm

e = 1;

a = 1;

for(i = 1; i < n; i++) {

a = a × x × (1 / i);

e = e + a;

}

e𝑥 =
𝑥𝑘

𝑘!

∞

𝑘=0

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 181

Datapath / Controller

e

Adder

Mult

a

x

counter

ROM

cntc

presetc

Selx

Seli

preseta

loada

presete

loade

x

loadx

16

16

18

16

16 18

16

16

16

16

Co (to controller)

3

i

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 182

Datapath

e

Adder

Mult

a

x

counter

ROM

cntc

presetc

Selx

Seli

preseta

loada

presete

loade

x

loadx

16

16

18

16

16 18

16

16

16

16

Co (to controller)

3

i

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 183

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 184

RESET

Rst = 1

WAIT_ON_START
CALC_NEXT_TERM_

1

Busy = 0

Loadx = 1

Preset a = 1

Preset e = 1

Preset c = 1

Start = 0

Rst = 0
Start = 1

Load a = 1

Sel i = 1

CALC_NEXT_TERM_

2

Load a = 1

Sel x = 1

Cntc = 1

ADD_NEW_TERM

Load e = 1

Co = 0

CALC_COMPLETE

Busy = 0

Done = 1

Co = 1

Input Wrapper:
Datapath & Controller Partitioning

datareg3 datareg2 datareg1 datareg0

MUX 4to1

Counter
3-bit

8888

2

32

co

counten

rst_counter

DataIn

clk

ldinput 8

8

8

8 DataOut

Controller

clk

rst

InReady

co

done

start

InAccept

ldinput

counten

 rst_regs

rst_counter

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 185

Input Wrapper:
State Machine

WAIT_ON_InReady

rst_regs = 1
rst_counter = 1

INPUT_ACCEPT

InAccept = 1
ldinput = 1

PUT_DATA

start = 1

START

counten = 1

WAIT_ON_DONE

InReady

CO
done

~CO

Controller

clk

rst

InReady

co

done

start

InAccept

ldinput

counten

 rst_regs

rst_counter

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 186

Output Wrapper:
Datapath & Controller Partitioning

reg3 reg2 reg1 reg0

8888

DataIn

clk

LoadData 8

8

88

32

Controller

clk

rst

done

outAccepted

grant

outReady

LoadData

req

 rst_regs

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 187

Output Wrapper:
State Machine

WAIT_ON_DONE

GET_DATA

LoadData = 1
counten= 1

WAIT_ON_GRANT

req = 1

WAIT_ON_ACCEPT

counten = 1

done

outAccepted

~CO

CO

CO

grant

Counter
3-bit

2

co

counten

rst_counter

Controller

clk

rst

done

outAccepted

grant

outReady

LoadData

req

 rst_regs

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 188

Complete System

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 189

CORDIC

 The CORDIC algorithm is an iterative technique based on the

rotation of a vector which allows many transcendental and

trigonometric functions to be calculated

 It is achieved using only shifts, additions/subtractions and table

look-ups which map well into hardware

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 190

CORDIC

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 191

CORDIC Advantages

 Number of gates required in hardware implementation on an

FPGA, are minimum and hardware complexity is greatly reduced

 Cost of a CORDIC hardware implementation is less as only shift

registers, adders and look-up table (ROM) are required

 Delay involved during processing is comparable to that of a

division or square-rooting operation

 No multiplication and only addition, subtraction and bit-shifting

operation

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 192

CORDIC Architecture

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 193

General Datapath

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 194

Controller

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 195

 Accelerator right

 Left

 Extended instructions

 Near memory

 filter FIR from register file (rf in the wrapper)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 197

The other category is interfaces or wrappers

 Wrappers

 Data sizing form ICEEP notes, that includes hand-shaking and

arbitration

 A wrapper only for handshaking, another for data sizing only for

burst connections, and the other for rf handling for extended

insts rf can be the rf of the processor mapped to this rf

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 198

Interfacing hardware

 LRU, very different from other structures

 DMA, using arbitration handles the memory reads and writes

 Not arithmetic hardwares

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 199

CPUs

 Von Neumann architcetures

 They have instructions, a processor with 4 instructions, it only

accesses the memory, instruction fetch

 Next step is the Somayeh processor which is a processor that

does the arithmetic work like sine, cosine, it only loads the

program and has a pc to fetch the instruction

 Program counter or the sequencer

 SAYEH Processor

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 217

von Neumann Computer Model
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 218

Processor and Memory Model
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Processor and

Memory Model

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 219

Processor and Memory Model

 von Neumann Process Model

addressbus

databus

Program

sequencer

MemoryProcessor

ControlData

IO Devices

databus

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 220

Processor Model Specification
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Processor Model

Specification

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 221

Processor Model Specification

DataPath Controller

6

im_abus

8

im_dbus

Instruction

Memory

6

dm_abus

8

dm_in_dbusData

Memory

8

dm_out_dbus

2

opcode

ld_ac

ac_src

pc_src

rd_mem

wr_mem

reset

Adding CPU

Clk
 Interface of the Adding CPU

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 222

Processor Model Specification

 Instruction Format

opcode adr

7 6 5 0

opcode immd

7 6 5 0

Memory-Transfer & Control-Flow Instruction Format: Arithmetic Instruction Format:

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 223

Designing the Adding CPU
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Designing the

Adding CPU

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 224

Design of Datapath
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Design of Datapath

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 225

Design of Datapath

AC

add ALU

IR

PC

pass

clr_pc

ld_pc

inc_pc

ld_ac ld_ir

alu_on_dbus

dbus_on_datadata_on_dbus

data_bus

dbus

ir_on_adr pc_on_adradr_bus

8 8

6

6

6 6

6

2

opcode

Controller

rd_mem

wr_mem

clk
reset

 Architectural Design of our Adding Machine

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 226

Control Part Design
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Control Part Design

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 227

Control Part Design

 Controller of Adding CPU

Controller

Reset clr_pc

pc_on_adr

rd_mem

data_on_dbus

ld_ir

inc_pc

ld_pc

ir_on_adr

dbus_on_data

ld_ac

alu_on_dbus

wr_mem

Fetch

Decode

Execute

rd_mem

wr_mem

clk
reset

opcode
2

ir_on_adr

pc_on_adr

dbus_on_data

data_on_dbus

ld_ir

ld_ac

ld_pc

inc_pc

clr_pc

padd

alu_on_dbus

add

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 228

AddingCPU VHDL Description
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

AddingCPU
VHDL Description

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 229

Data Components
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

Data Components

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 230

Data Components
ENTITY AC IS

PORT (data_in : IN std_logic_vector(7 DOWNTO 0);

load, clk : IN std_logic;

data_out : OUT std_logic_vector(7 DOWNTO 0));

END ENTITY ;

--

ARCHITECTURE procedural OF AC IS BEGIN

PROCESS (clk) BEGIN

IF clk = '1' AND clk'EVENT THEN

IF load = '1' THEN

data_out <= data_in;

END IF;

END IF;

END PROCESS;

END ARCHITECTURE;

 Datapath Components of the Adding Machine

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 231

Data Components

ENTITY IR IS

PORT (data_in : IN std_logic_vector(7 DOWNTO 0);

load, clk : IN std_logic;

data_out : OUT std_logic_vector(7 DOWNTO 0));

END ENTITY ;

--

ARCHITECTURE procedural OF IR IS BEGIN

PROCESS (clk) BEGIN

IF clk = '1' AND clk'EVENT THEN

IF load = '1' THEN data_out <= data_in; END IF;

END IF;

END PROCESS;

END ARCHITECTURE;

 Datapath Components of the Adding Machine (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 232

Data Components
ENTITY PC IS

PORT (data_in : IN std_logic_vector(5 DOWNTO 0);

load, inc, clr, clk : IN std_logic;

data_out : OUT std_logic_vector(5 DOWNTO 0));

END ENTITY ;

ARCHITECTURE procedural OF PC IS

SIGNAL pc : std_logic_vector(5 DOWNTO 0);

BEGIN

PROCESS (clk) BEGIN

IF clk = '1' AND clk'EVENT THEN

IF clr = '1' THEN pc <= (OTHERS => '0');

ELSIF load = '1' THEN pc <= data_in;

ELSIF inc = '1' THEN pc <= pc + 1; END IF;

END IF;

END PROCESS;

data_out <= pc;

END ARCHITECTURE;

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 233

Data Components
ENTITY ALU IS

PORT (a, b : IN std_logic_vector(7 DOWNTO 0);

pass, add : IN std_logic;

alu_out : OUT std_logic_vector(7 DOWNTO 0));

END ENTITY ;

ARCHITECTURE functional OF ALU IS

SIGNAL alu_res : std_logic_vector(7 DOWNTO 0);

BEGIN

PROCESS (a, b, pass, add) BEGIN

IF pass = '1' THEN alu_res <= a;

ELSIF add = '1' THEN alu_res <= a + b;

ELSE alu_res <= (OTHERS => '0');

END IF;

END PROCESS;

alu_out <= alu_res;

END ARCHITECTURE;

 Datapath Components of the Adding Machine (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 234

DataPath Description
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete Machine

DataPath Description

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 235

DataPath Description
ENTITY datapath IS

PORT (ir_on_adr, pc_on_adr, dbus_on_data : IN std_logic;

data_on_dbus, ld_ir, ld_ac, ld_pc : IN std_logic;

inc_pc, clr_pc,

pass, add, alu_on_dbus, clk : IN std_logic;

adr_bus : OUT std_logic_vector(5 DOWNTO 0);

op_code : OUT std_logic_vector(1 DOWNTO 0);

data_bus : INOUT std_logic_vector(7 DOWNTO 0));

END ENTITY ;

ARCHITECTURE structural OF datapath IS

SIGNAL dbus, ir_out, a_side :

std_logic_vector(7 DOWNTO 0);

SIGNAL alu_out, b_side : std_logic_vector(7 DOWNTO 0);

SIGNAL pc_out : std_logic_vector(5 DOWNTO 0);

.

END ARCHITECTURE;

 Adding CPU Datapath Description

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 236

DataPath Description
ARCHITECTURE structural OF datapath IS

BEGIN

IR : ENTITY WORK.IR(procedural)

PORT MAP (dbus, ld_ir, clk, ir_out);

PC : ENTITY WORK.PC(procedural)

PORT MAP (ir_out(5 DOWNTO 0), ld_pc, inc_pc,

clr_pc, clk, pc_out);

AC : ENTITY WORK.AC(procedural)

PORT MAP (dbus, ld_ac, clk, a_side);

ALU : ENTITY WORK.ALU(functional)

PORT MAP (a_side, b_side, pass, add, alu_out);

b_side <= '0'&'0'&ir_out(5 DOWNTO 0);

.

END ARCHITECTURE;

 Adding CPU Datapath Description (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 237

DataPath Description
ARCHITECTURE structural OF datapath IS

BEGIN

.

adr_bus <= ir_out(5 DOWNTO 0) WHEN ir_on_adr = '1'

ELSE (OTHERS => 'Z');

adr_bus <= pc_out WHEN pc_on_adr = '1' ELSE

(OTHERS => 'Z');

dbus <= alu_out WHEN alu_on_dbus = '1' ELSE

(OTHERS => 'Z');

data_bus <= dbus WHEN dbus_on_data = '1' ELSE

(OTHERS => 'Z');

dbus <= data_bus WHEN data_on_dbus = '1' ELSE

(OTHERS => 'Z');

op_code <= ir_out(7 DOWNTO 6);

END ARCHITECTURE;

 Adding CPU Datapath Description (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 238

Controller Description
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete MachineController Description

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 239

Controller Description
ENTITY controller IS

PORT (rst, clk : IN std_logic;

op_code : IN std_logic_vector(1 DOWNTO 0);

rd_mem, wr_mem : OUT std_logic;

ir_on_adr, pc_on_adr : OUT std_logic;

dbus_on_data, data_on_dbus, ld_ir : OUT std_logic;

ld_ac, ld_pc, inc_pc, clr_pc,pass : OUT std_logic;

add, alu_on_dbus : OUT std_logic);

END ENTITY ;

--

ARCHITECTURE procedural OF controller IS

TYPE state IS (Reset, Fetch, Decode, Execute);

SIGNAL present_state, next_state : state;

BEGIN

.

END ARCHITECTURE;

 Controller VHDL Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 240

Controller Description
ARCHITECTURE procedural OF controller IS

BEGIN

PROCESS (clk)--Sequential

BEGIN

IF clk = '1' AND clk'EVENT THEN

IF rst = '1' THEN

present_state <= Reset;

ELSE

present_state <= next_state;

END IF;

END IF;

END PROCESS;

--

.

END ARCHITECTURE;

 Controller VHDL Code (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 241

Controller Description
PROCESS (present_state, rst) --Combinational

BEGIN

rd_mem <= '0'; wr_mem <= '0'; ir_on_adr <= '0';

pc_on_adr <= '0'; dbus_on_data <= '0';

data_on_dbus <= '0'; ld_ir <= '0'; pass <= '0';

ld_ac <= '0'; ld_pc <= '0'; inc_pc <= '0';

clr_pc <= '0'; add <= '0'; alu_on_dbus <= '0';

CASE present_state IS

WHEN Reset =>

IF rst = '1' THEN

next_state <= Reset;

ELSE

next_state <= Fetch;

END IF;

clr_pc <= '1';

.

 Controller VHDL Code (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 242

Controller Description
PROCESS (present_state, rst, op_code) --Combinational

BEGIN

.

WHEN Fetch =>

next_state <= Decode;

pc_on_adr <= '1';

rd_mem <= '1';

data_on_dbus <= '1';

ld_ir <= '1';

inc_pc <= '1';

WHEN Decode =>

next_state <= Execute;

.

END PROCESS;

.

 Controller VHDL Code (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 243

Controller Description
.

WHEN Execute =>

next_state <= Fetch;

CASE op_code IS

WHEN "00" =>

ir_on_adr <= '1'; rd_mem <= '1';

data_on_dbus <= '1'; ld_ac <= '1';

WHEN "01" =>

dbus_on_data <= '1';alu_on_dbus<= '1';

pass <= '1'; wr_mem <= '1';

ir_on_adr <= '1';

WHEN "10" =>

ld_pc <= '1';

WHEN "11" =>

add <= '1'; alu_on_dbus <= '1';

ld_ac <= '1';

 Controller VHDL Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 244

Controller Description
.

WHEN OTHERS =>

rd_mem <= '0'; pc_on_adr <= '0';

pass <= '0';

ir_on_adr <= '0'; wr_mem <= '0';

ld_ac <= '0';

dbus_on_data <= '0';data_on_dbus<='0';

ld_ir <= '0'; alu_on_dbus <= '0';

add <= '0';

inc_pc <= '0'; clr_pc <= '0';

ld_pc <= '0';

END CASE;

WHEN OTHERS => next_state <= Reset;

END CASE;

END PROCESS;

END ARCHITECTURE;

 Controller VHDL Code

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 245

The Complete Machine
von Neumann

Computer Model

Processor and

Memory Model

Processor Model

Specification

Designing the

Adding CPU
Design of Datapath

Control Part Design
AddingCPU

VHDL Description

Data Components DataPath Description

Controller Description The Complete MachineThe Complete Machine

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 246

The Complete Machine
ENTITY addingCPU IS

PORT (reset, clk : IN std_logic;

adr_bus : OUT std_logic_vector(5 DOWNTO 0);

rd_mem, wr_mem : OUT std_logic;

data_bus : INOUT std_logic_vector(7 DOWNTO 0));

END ENTITY ;

--

ARCHITECTURE structural OF addingCPU IS

SIGNAL ir_on_adr, pc_on_adr, dbus_on_data : std_logic;

SIGNAL data_on_dbus, ld_ir, ld_ac, ld_pc : std_logic;

SIGNAL inc_pc, clr_pc : std_logic;

SIGNAL pass, add, alu_on_dbus : std_logic;

SIGNAL op_code : std_logic_vector(1 DOWNTO 0);

BEGIN

.

END ARCHITECTURE;

 AddingCPU Top-level Description

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 247

The Complete Machine
ARCHITECTURE structural OF addingCPU IS

BEGIN

CU: ENTITY WORK.Controller

PORT MAP (reset, clk, op_code, rd_mem,

wr_mem, ir_on_adr, pc_on_adr,

dbus_on_data, data_on_dbus,

ld_ir, ld_ac, ld_pc, inc_pc,

clr_pc, pass, add, alu_on_dbus);

DP: ENTITY WORK.DataPath

PORT MAP (ir_on_adr, pc_on_adr, dbus_on_data,

data_on_dbus,ld_ir, ld_ac, ld_pc,

inc_pc, clr_pc, pass, add,

alu_on_dbus, clk, adr_bus, op_code,

data_bus);

END ARCHITECTURE;

 AddingCPU Top-level Description (Continued)

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 248

Summary

 This chapter presented VHDL code and descriptions for several hardware
components.

 Emphasized on synthesizable cores

 Considered situations that a core model was to be for evaluation purposes only

 We discussed:

 Individual stand-alone component descriptions

 Design partitioning

 Putting sub-components of a system together for formation of complete
systems.

April 2019

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi 249

Acknowledgment

Slides developed by:

Homa Alemzadeh

Edited December 2017, by:

Bahar Behazin

Last edited April 2019, by:

Saba Yousefzadeh

April 2019 250

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

