
April 2019 1

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Chapter 7

VHDL Signal Model



April 2019 2

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

VHDL Signal Model

7.1 Characterizing Hardware Languages

7.1.1 Timing and Concurrency of Operations

7.2 Signal Assignments

7.2.1 Inertial Delay Mechanism

7.2.2 Transport Delay Mechanism

7.2.3 Comparing Inertial and Transport

7.3 Concurrent and Sequential Assignments

7.3.1 Concurrent Assignments

7.3.2 Events and Transactions

7.3.3 Delta Delay

7.3.4 Sequential Placement of Transactions



April 2019 3

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

VHDL Signal Model

7.4 Multiple Concurrent Drivers

7.4.1 Resolving between Multiple Driving Values

7.4.2 Resolutions with Guarded Assignments

7.4.3 Resolving INOUT Signals

7.4.4 Standard Resolution 

7.5 Summary



April 2019 4

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Timing and Concurrency of Operations

 Illustrating Timing and Concurrency

w

a

b

s

w

tatb t0 t0+8

4ns

i
4

5

3

a
s

b

j

k

5



April 2019 5

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

i := NOT s;

j := a AND i;

K := s AND b;

W := j OR k;

 Modeling a Multiplexer with Sequential Statements

Sequential Modeling



April 2019 6

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ENTITY mux IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE concurrent of mux IS

SIGNAL i, j, k : BIT;

BEGIN

i <= NOT s AFTER 4 NS;

j <= a AND i AFTER 5 NS;

k <= b AND s AFTER 5 NS;

w <= j OR k AFTER 3 NS;

END ARCHITECTURE concurrent;

 Modeling a Multiplexer with Concurrent Statements

Concurrent Modeling



April 2019 7

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Concurrent Modeling

 Timing of  Signals of  Concurrent Description of  previous Multiplexer

a

b

s

i

j

w

k

4ns

5ns

5ns

8ns

4ns

3ns



April 2019 8

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 VHDL Description for the Demonstration of  Delay Mechanisms

Signal Assignments
ENTITY example IS END ENTITY;

--

ARCHITECTURE delay OF example IS

SIGNAL waveform : BIT;

SIGNAL target1, target2, target3 : BIT;

BEGIN

-- Inertial delay :: Passes >= 5, Eliminates < 5 

target1 <= waveform AFTER 5 NS; 

-- Inertial with reject :: Passes > 3, Eliminates <= 3

target2 <= REJECT 3 NS INERTIAL waveform AFTER 5 NS;

-- Illustrating transport delay :: Passes all, Eliminates none

target3 <= TRANSPORT waveform AFTER 5 NS;

-- Creating waveform (not shown)

waveform <= -- P5, N6, P4, N6, P3, N6, P2, P6,

-- N5, P6, N4, P6, N3, P6, N2, N6; 

END delay;



April 2019 9

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 The RC Delay is Best Represented by an Inertial Delay Mechanism

Inertial Delay Mechanism

Target1 or Target2



April 2019 10

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Illustrating Differences between Delay Mechanisms in VHDL

Comparing Inertial and Transport

waveform

target1

target2

target3

2 ns3 ns4 ns5 ns2 ns3 ns4 ns5 ns



April 2019 11

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Resolving a Single Value from Multiple Driving Values

Concurrent Assignments 

.

.

.

.

.

.

Signal

Value

Multiple

Driving

Value

Resolution

Function









April 2019 12

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 A Transaction, from Creation to Expiration 

Events and Transactions

d

0
t t0 t1

T
ra

n
s

a
c

ti
o

n
 t

im
e

 c
o

m
p

o
n

e
n

t

NOW

d-t0

tr1=(v,d)

tr1=(v,d-t0)

EXPIRED

tr1=(v,0)

d



April 2019 13

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE demo OF example IS

SIGNAL a, b, c : BIT := ‘0’;

BEGIN

a <= ‘1’ AFTER 15 NS;

b <= NOT a AFTER 5 NS;

c <= a AFTER 10 NS;

END demo;

 A Simple Description for Illustrating Events and Transactions 

Events and Transactions



April 2019 14

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Events and Transactions that Occur on Signals in previous slide : (a) 
The Resulting Timing Diagram Showing Transactions when they 
become Current;

Events and Transactions

a

b

c

0 5 10 15 20 25(a) ns



April 2019 15

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Events and Transactions that Occur on Signals in previous slide : (b) 

Transactions when they are Placed on Signals;

Events and Transactions

(b) 0 5 10 15 20 25

(0,10) on c

ns

Transactions when they are placed on signals 

(0,05) on b(1,05) on b

(0,10) on c

(1,15) on a



April 2019 16

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Events and Transactions that Occur on Signals in previous slide : (c) 
Transactions as their Time Values Approach Zero to Become Current; 

Events and Transactions

(c) 0 5 10 15 20 25

Transactions at 5 NS intervals 

ns

ac

b

1

0

1

1

0

a

c 1a

1

0

c

b 1c



April 2019 17

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Events and Transactions that Occur on Signals in previous slide : (d) 

Transactions from Creation to Expiration

Events and Transactions

0 5 10 15 20 25 ns

a

c

b

c

b

Path of transaction to expiration

(d)



April 2019 18

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Delta Delay 

 Demonstrating Need for Delta Delay

ENTITY timing IS

PORT (a, b : IN BIT; z, zbar : BUFFER BIT);

END ENTITY;

--

ARCHITECTURE delta of timing IS

BEGIN

z_bar <= NOT z;

z <= a AND b AFTER 10 NS;

END delta;



April 2019 19

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ENTITY mux IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE concurrent of mux IS

SIGNAL i, j, k : BIT;

BEGIN

i <= NOT s;

j <= a AND i;

k <= b AND s;

w <= j OR k AFTER 36 NS;

END ARCHITECTURE concurrent;

Sequential Wait Statements 

 VHDL Description for Demonstrating the Delta Delay 



April 2019 20

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Timing Diagram for the Description of  Figure 7.13, Showing Delta 
Delays 

Delta Delay

0 0

1

12 24 36 ns

0

0

0

1

1

1

1 2 3

a

b

s

i

w

k

j



April 2019 21

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE concurrent OF timing_demo IS

SIGNAL  a, b, c : BIT := ‘0’;

BEGIN

a <= ‘1’;

b <= NOT a;

c <= NOT b;

END concurrent;

 Chain of  Two Inverters, Delta Time, Transactions, and Concurrency

Delta Delay



April 2019 22

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Delta Delay

 Timing Diagram for the timing_demo Description of  previous slide 

0

0 0

0

0a

b

c

ns1 32



April 2019 23

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Delta Delay

 Oscillation in Zero Real Time. (a) Circuit to Model;

y x

Ideal elements with 

zero real time delay



April 2019 24

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE forever OF oscillating IS

SIGNAL  x: BIT := ‘0’;

SIGNAL  y: BIT := ‘1’;

BEGIN

x <= y;

y <= NOT x;

END forever;

 Oscillation in Zero Real Time. (b) VHDL Representation;

Delta Delay



April 2019 25

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Delta Delay

 Oscillation in Zero Real Time. (c) Signal Waveforms

y

0 61 2 3 4 5
t

7

x 0

0 61 2 3 4 5
t

7

1



April 2019 26

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Sequential Placement of  Transactions in a Sequential Body of  VHDL 

Sequential Placement of Transactions 

ARCHITECTURE sequential OF 

sequential_placement IS

. . .

BEGIN

PROCESS

x <= v1 AFTER t1;

x <= v2 AFTER t2;

WAIT;

END PROCESS;

END sequential;



April 2019 27

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE concurrent OF 

sequential_placement IS

. . .

BEGIN

a <= v1, v2 AFTER t1;

x <= a AFTER t2;

END concurrent;

Sequential Placement of Transactions

 Sequential Placement of  Transactions in a Concurrent Body of  VHDL



April 2019 28

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Projected Output Waveform 

Signal Drivers 

0t1

v1

t2t3t4

v2v3v4 Signal

Driving Value

Transactions

Time

Value

Signal Driver



April 2019 29

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Signal Drivers

 Multiple Drivers of  a Resolved Signal

Driving Value

Resolved 

Signal

Resolved 

Value
D

R

I

V

E

R

S

Resolution 

Function

0t1

v1

t2t3t4

v2v3v4

Transactions

Time

Value

0t1

v1

t2t3t4

v2v3v4

Time

Value

0t1

v1

t2t3t4

v2v3v4

Time

Value



April 2019 30

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Effective Transactions on the Driver of  a Signal 

when Multiple Transactions Are Sequentially 

Placed on the Signal Driver 

Transaction Appending Rules 

New Transaction 

is BEFORE 

Already Existing

New Transaction 

is AFTER 

Already Existing

     Overwrite 

     existing transaction

1

2

    Append 

    the new transaction

     Overwrite 

     existing transaction

3

     Overwrite 

     existing transaction

TRANSPORT INERTIAL
INERTIAL 

with REJECT

Vnew /= Vexisting

diff < delay

5 6

      Append 

      the new transaction

      Append 

      the new transaction

7 Vnew /= Vexisting

diff  > reject

      Overwrite 

      existing transaction

Overwrite 

existing transaction

Append 

The new transaction

4

Vnew /= Vexisting

diff <= reject

Vnew = Vexisting4 Vnew = Vexisting

3



April 2019 31

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

case1: PROCESS BEGIN -- Transport, Before

w1 <= ‘1’ AFTER 5 NS;

w1 <= TRANSPORT ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case1; -- Overwrites existing

Transaction Appending Rules

 Transport Delay, Before Existing Transactions 



April 2019 32

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Transaction Appending Rules

 Transport Delay, Before Existing Transactions (continued) 

0 1 2 3 4 5 6 7 8 9

Z

w1

0
Z

5 ns

‘1’ ‘Z’

0 3 ns

‘0’ ‘Z’

0 

w1 w1



April 2019 33

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

case2: PROCESS BEGIN -- Transport, After

w2 <= ‘1’ AFTER 5 NS;

w2 <= TRANSPORT ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case2; -- Appends to existing

Transaction Appending Rules

 Transport Delay After Existing Transaction



April 2019 34

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Transport Delay After Existing Transaction

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w2

1Z

5 ns

‘1’ ‘Z’

0 5 ns

‘1’ ‘Z’

0 8 ns

‘0’

0

w2 w2



April 2019 35

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial or Inertial with Reject, Before Existing

Transaction Appending Rules

case3a: PROCESS BEGIN -- Inertial, Before

w3a <= ‘1’ AFTER 5 NS;

w3a <= INERTIAL ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case3a; -- Overwrites existing

--

case3b: PROCESS BEGIN -- Reject, Before

w3b <= ‘1’ AFTER 5 NS;

w3b <= REJECT 3 NS INERTIAL ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case3b; -- Overwrites existing



April 2019 36

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial or Inertial with Reject, Before Existing (continued)

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w3

Z

5 ns

‘1’ ‘Z’

0 3 ns

‘0’ ‘Z’

0 

0

w3 w3



April 2019 37

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial or Inertial with Reject, Same Value Transaction After Existing 

Transaction Appending Rules

case4a: PROCESS BEGIN -- Inertial, After, Vn=Ve

w4a <= ‘0’ AFTER 5 NS;

w4a <= INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case4a; -- Appends to existing

--

case4b: PROCESS BEGIN -- Reject, After, Vn=Ve

w4b <= ‘0’ AFTER 5 NS;

w4b <= REJECT 8 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case4b; -- Appends to existing



April 2019 38

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial or Inertial with Reject, Same Value Transaction After Existing
(continued)

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w4

Z

5 ns

‘0’ ‘Z’

0 5 ns

‘0’ ‘Z’

0 8 ns

‘0’

0 0

w4 w4



April 2019 39

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial Delay, Different Value Transaction After Existing

Transaction Appending Rules

case5: PROCESS BEGIN -- Inertial, After, Vn/=Ve

w5 <= ‘1’ AFTER 5 NS;

w5 <= INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case5; -- Overwrites existing



April 2019 40

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial Delay, Different Value Transaction After Existing (continued)

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w5

Z

5 ns

‘1’ ‘Z’

0 8 ns

‘0’ ‘Z’

0 

w5 w5



April 2019 41

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

case6: PROCESS BEGIN 

-- Reject, After, Vn/=Ve, Diff <= Reject

w6 <= ‘1’ AFTER 5 NS;

w6 <= REJECT 4 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case6; -- Overwrites existing

 Inertial with Reject, Different Values, After Existing, Reject Occurs 

Transaction Appending Rules



April 2019 42

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial with Reject, Different Values, After Existing, Reject Occurs 

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w6

Z

5 ns

‘1’ ‘Z’

0 8 ns

‘0’ ‘Z’

0 

w6 w6



April 2019 43

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

case7: PROCESS BEGIN 

-- Reject, After, Vn/=Ve, Diff > Reject

w7 <= ‘1’ AFTER 5 NS;

w7 <= REJECT 2 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case7; -- Appends to existing

 with Reject, Different Values, After Existing, Reject Doesn’t Occur

Transaction Appending Rules



April 2019 44

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial with Reject, Different Values, After Existing, Reject Doesn’t 
Occur

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w7

5 ns

‘1’ ‘Z’

0 5 ns

‘1’ ‘Z’

0 8 ns

‘0’

1 0Z

w7w7



April 2019 45

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Pulse Rejection 

 Pulse Rejection in Inertial, Reject, and Transport Delay 

0 18 27

waveform

target1

3 5 8 14 24 29 32 33 35 38

target2

target3



April 2019 46

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Pulse Rejection 

 New, Pending, and Expired Transactions on the Targets of  previous 
slide



April 2019 47

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Pulse Rejection 

 New, Pending, and Expired Transactions on the Targets of  previous 
slide (Continued)



April 2019 48

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Placing Waveform Elements 

 Sequential Placement of  Transactions by Concurrent Assignments

ARCHITECTURE delay OF example IS

SIGNAL a, b, BIT := ‘0’;

BEGIN

a <= ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;

b <= ‘0’, a AFTER 3 NS;

END ARCHITECTURE delay;

0 5 10 15

a

b

3 8 13



April 2019 49

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Resolving between Multiple Driving Values 

 Pass Transistor Based Multiplexer 

s

a

b
w

y

T2

T1



April 2019 50

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ENTITY multiplexer IS 

PORT (a, b, s : IN v4l; w : OUT v4l);

END ENTITY;

--

-- Does not compile

ARCHITECTURE wired OF multiplexer IS

SIGNAL y : wiring v4l;

BEGIN

T1: y <= a WHEN s=‘0’ ELSE 'Z';

T2: y <= b WHEN s=‘1’ ELSE 'Z';

w <= y;

END ARCHITECTURE wired;

 Multiplexer Circuit, Two Concurrent Assignments (Does Not Compile)

Resolving between Multiple Driving Values



April 2019 51

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

FUNCTION wire (a, b : v4l) RETURN v4l IS

CONSTANT v4l_wire_table : v4l_2d := (

‘X’ => (‘X’, ‘X’, ‘X’, ‘X’),

‘0’ => (‘X’, ‘0’, ‘X’, ‘0’),

‘1’ => (‘X’, ‘X’, ‘1’, ‘1’),

‘Z’ => (‘X’, ‘0’, ‘1’, ‘Z’));

BEGIN

RETURN v4l_wire_table (a, b)

END wire;

 Resolving Every Pair of  Values of  v4l Type  

Resolving a Pair of Values 



April 2019 52

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

FUNCTION wiring ( drivers : v4l_vector) RETURN v4l IS

VARIABLE accumulate : v4l := 'Z';

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := wire (accumulate, drivers(i));

END LOOP;

RETURN accumulate;

END wiring;

 Wiring Resolution Function, an Array Version of  Wire

Resolving Multiple Driving Values 



April 2019 53

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE wired OF multiplexer IS

SIGNAL y : wiring v4l;

BEGIN

T1: y <= a WHEN s=‘0’ ELSE 'Z';

T2: y <= b WHEN s=‘1’ ELSE 'Z';

w <= y;

END ARCHITECTURE wired;

 Working Architecture for Multiplexer

Applying a Resolution Function



April 2019 54

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

FUNCTION wiring ( drivers : v4l_vector) RETURN v4l;

SUBTYPE wired_v4l IS wiring v4l;

TYPE wired_v4l_vector IS 

ARRAY (NATURAL RANGE <>) OF wired_v4l;

 Resolution Related Declarations 

Resolution Package 



April 2019 55

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY multiplexer_n4 IS 

PORT (a, b, c, d : IN wired_v4l_vector; 

s : IN wired_v4l_vector (1 DOWNTO 0);

w : OUT wired_v4l_vector);

END ENTITY;

--

ARCHITECTURE wired OF multiplexer_n4 IS

BEGIN -- Four Bus Connections

BC1: w <= a WHEN s="00" ELSE 

(a'RANGE => 'Z');

BC2: w <= b WHEN s="01" ELSE 

(b'RANGE => 'Z');

BC3: w <= c WHEN s="10" ELSE 

(c'RANGE => 'Z');

BC4: w <= d WHEN s="11" ELSE 

(d'RANGE => 'Z');

END ARCHITECTURE wired;

 Using Resolved Multi-bit Busses

Resolution Package 



April 2019 56

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

PACKAGE VerilogLogic IS

FUNCTION oring ( drivers : v4l_vector) RETURN v4l;

SUBTYPE ored_v4l IS oring v4l;

TYPE ored_v4l_vector IS 

ARRAY(NATURAL RANGE<>)OF ored_v4l;

. . .

END PACKAGE VerilogLogic;

PACKAGE BODY VerilogLogic IS

FUNCTION oring ( drivers : v4l_vector) RETURN v4l IS

VARIABLE accumulate : v4l := ‘0’;

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := accumulate OR drivers(i);

END LOOP;

RETURN accumulate;

END oring;

. . .

END PACKAGE BODY VerilogLogic;

A Resolution Package 

 Package Description for Oring Resolution Function 



April 2019 57

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Projected Output Waveforms of  Resolution Function

Relation to Sequential Transactions 

0t1

v1

t2t3t4

v2v3v4

Time

Value

0t1

v1

t2t3t4

v2v3v4

Time

Value

0t1

v1

t2t3t4

v2v3v4

Time

Value

y

a
b

c
d

y

Resolution function notation

wiring



April 2019 58

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY selection_1ofn IS 

PORT (ins : IN wired_v4l_vector; 

sel : IN wired_v4l_vector; 

w : OUT wired_v4l);

END ENTITY;

--

ARCHITECTURE wired OF selection_1ofn IS

SIGNAL y : wired_v4l BUS;

BEGIN 

Mi: FOR i IN ins'RANGE GENERATE

Ti: BLOCK (sel(i) = ‘1’) BEGIN

y <= GUARDED ins (i);

END BLOCK Ti;

END GENERATE Mi;

w <= y;

END ARCHITECTURE wired;

Resolutions with Guarded Assignments 

 1-of-n Selection Logic Assign Guarded Assignments 



April 2019 59

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Resolutions with Guarded Assignments

 NMOS Transistor Based Selection Logic

sel(0)

ins(0)

sel(1)

ins(1)

sel(i)

ins(i)

w

y



April 2019 60

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Resolutions with Guarded Assignments

 Guarded Signal Assignments into Resolved Signals 

0t1

v1

t2t3t4

v2v3v4

Time

Value

0t1

v1

t2t3t4

v2v3v4

Time

Value

y

Driver 1

Driver 2

RHS Activation

RHS Activation

GUARD1

GUARD2
LHS Signal



April 2019 61

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Simple Assignments 

Simple

Assignments

REGISTER 

Kind 

Resolved 

Signal

No Kind 

Resolved 

Signal

BUS Kind 

Resolved 

Signal

Resolutions

With

Guarded

Assignments



April 2019 62

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 NMOS Half-Register with Selection Logic

REGISTER Kind Resolved Signal 

sel(0)

ins(0)

sel(1)

ins(1)

sel(i)

ins(i)

w

y



April 2019 63

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

ARCHITECTURE wired_reg OF selection_1ofn IS

SIGNAL y : wired_v4l REGISTER;

BEGIN 

Mi: FOR i IN ins'RANGE GENERATE

Ti: BLOCK (sel(i) = ‘1’) BEGIN

y <= GUARDED ins (i);

END BLOCK Ti;

END GENERATE Mi;

w <= NOT y;

END ARCHITECTURE wired_reg;

 Using REGISTER Kind for Selection Logic with Half-Register 

REGISTER Kind Resolved Signal



April 2019 64

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Comparing Disconnections

 Last Disconnections. (a) BUS Kind; (b) REGISTER Kind; (c) no Kind 

VL
f(VL)

f(VL)

f(VL)

V1

V1

V1

VL

VL

VL VL

VL

V

V

V

Null

Null

Null

V

f(Null)

f(V)

f(V)

(a) BUS Kind

(b) Register Kind

(c) Not Guarded



April 2019 65

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Resolving Right and Left Signals 

 Resolved Signals on Right- and Left-Hand Sides

0t1

v1

t2t3t4

v2v3v4

Time

Value

Other Drivers

Value used on the right hand sideValue placed 

on driver of a



April 2019 66

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Resolving INOUT Signals 

 Connecting INOUT Ports Require Resolved Signals. (a) VHDL Code; 
(b) Graphical Notation 

ENTITY one( a : IN v4l; x: INOUT v4l )…

ENTITY two( b : IN v4l; y: INOUT v4l )…

ENTITY three IS END three;

ARCHITECTURE connecting OF three IS

  SIGNAL w: oring v4l;

BEGIN

  c1: ENTITY WORK.one PORT MAP( a, w );

  c2: ENTITY WORK.two PORT MAP( b, w );

END connecting;

(a)

Entity 

two

(b)

x y

w

Entity 

one



April 2019 67

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

What we covered in this chapter were 

 discuss sequential and concurrent assignments of values to signals

 took a limited look of a single driver and only discussed how 
sequential transactions affect a signal driver

 showed how multiple driving values interact for resolving a value for a 
signal with multiple concurrent drivers

 topics of sequential placement of transactions and resolution 
functions

Summary



Acknowledgment

Slides developed by:

Nadereh Hatami

Last edited April 2019, by:

Saba Yousefzadeh

April 2019 68

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi


