Chapter 7
VHDL Signal Model

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

7.1

7.2

1.5

April 2019

VHDL Signal Model

Characterizing Hardware Languages

7.1.1 Timing and Concuttency of Operations

Signal Assignments

7.2.1 Inertial Delay Mechanism

7.2.2 Transport Delay Mechanism

7.2.3 Comparing Inertial and Transport

Concurrent and Sequential Assignments
7.3.1 Concurrent Assignments
7.3.2 Events and Transactions

7.3.3 Delta Delay
7.3.4 Sequential Placement of Transactions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VHDL Signal Model

7.4 Multiple Concurtent Drivers
7.4.1 Resolving between Multiple Driving Values
7.4.2 Resolutions with Guarded Assignhments
7.4.3 Resolving INOUT Signals
7.4.4 Standard Resolution

7.5 Summary

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

Timing and Concurrency of Operations

=

B

= Jllustrating Timing and Concurrency

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

Sequential Modeling

i1 := NOT s;

J := a AND 1;
K := s AND b;
W := jJ OR k;

" Modeling a Multiplexer with Sequential Statements

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Concurrent Modeling

ENTITY mux IS
PORT (a, b, s : IN BIT; w : OUT BIT)
END ENTITY;
ARCHITECTURE concurrent of mux IS
SIGNAL 1, j, k : BIT;
BEGIN
= SINOAESENAE
=AY T IRNAT

IRANIDESEA b

END ARCHITECTURE concurrent;

® Modeling a Multiplexer with Concurtent Statements

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Concurrent Modeling

= Timing of Signals of Concurrent Description of previous Multiplexer

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

Signal Assignments

ENTITY example IS END ENTITY;

ARCHITECTURE delay OF example IS ___S___Z__

SIGNAL waveform : BIT;

BEGIN

—— Inertial delay :: Passes >= 5, Eliminates < 5
<= /b v Eo)el l:*‘i’i’._.% St NS

INERTIAL waveform AFTER 5 NS;

ANBYIE :-‘

ABElBH NS
—— Creatlng waveform (not shown)
waveform <= —-- P5, N6, P4, N6, P3, N6, P2, P6,
-- N5, P6, N4, P6, N3, P6, N2, N6;

END delay;

Va8 —

N

s

= VHDL Description for the Demonstration of Delay Mechanisms

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

1AV ey
SIGNAL targetl, target2, target3 : BIT; i:gf m\\\

Inertial Delay Mechanism

= The RC Delay is Best Represented by an Inertial Delay Mechanism

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

Comparing Inertial and Transport

(L)

L=

5 <= =

5 ¢ 2

= Illustrating Differences between Delay Mechanisms in VHDL

A e RS
>

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Concurrent Assignments

(<

Resolving a Single Value from Multiple Driving Values

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

April 2019

Events and Transactions

¥*

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A Transaction, from Creation to Expiration

VY

April 2019

Events and Transactions

ARCHITECTURE demo OF example IS
SIGNAL a, b, ¢ : BIT := ‘0’ ;
BEGIN
a <= ‘'1l’” AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;
END demo;

A Simple Description for Illustrating Events and Transactions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VY

April 2019

Events and Transactions

1
(—

Events and Transactions that Occur on Signals in previous slide : (a)
The Resulting Timing Diagram Showing Transactions when they
become Current;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

)¢

April 2019

Events and Transactions

1,15) on a
(1,05 o0nb

(0,10)on c

Events and Transactions that Occur on Signals in previous slide : (b)

Transactions when they are Placed on Signals;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

April 2019

Events and Transactions

Events and Transactions that Occur on Signals in previous slide : (c)
Transactions as their Time Values Approach Zero to Become Current;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

' 1

April 2019

Events and Transactions

Events and Transactions that Occur on Signals in previous slide : (d)

Transactions from Creation to Expiration

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

ARY%

April 2019

Delta Delay

ENTITY timing IS

PORT (a, b : IN BIT; z, zbar

END ENTITY

ARCHITECTURE delta
BEGIN

Zh A<= ENOTIZS

—_—

Z =0 AN D IS SAHEL

—

END delta;

of timing IS

ERSTONNSY

BUFFER BIT) ;

Demonstrating Need for Delta Delay

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

YA

April 2019

Sequential Wait Statements

ENTITY mux IS
PORT (a, b, s : IN BIT; w : OUT BIT)
END ENTITY;
ARCHITECTURE concurrent of mux IS
SIGNAL 1, j, k : BIT;
BEGIN
i <= NOT s;
J <= a AND 1i;
k <= b AND s;
w <= 7 OR k AFTER 36 NS;
END ARCHITECTURE concurrent;

VHDL Description for Demonstrating the Delta Delay

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

14

Delta Delay

1 NNl Nr—
— =]

Timing Diagram for the Description of Figure 7.13, Showing Delta
Delays

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Delta Delay

ARCHITECTURE concurrent OF timing demo IS
SIGNAL. a, b, ¢ : BIT := ‘0’;
BEGIN
a <= ‘1’;
b <= NOT a;
c <= NOT b;
END concurrent;

Chain of Two Inverters, Delta Time, Transactions, and Concurrency

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

April 2019

Delta Delay

o
—

Timing Diagram for the tming demo Description of ptevious slide

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yy

April 2019

Delta Delay

Oscillation in Zero Real Time. (a) Circuit to Model;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yy

April 2019

Delta Delay

ARCHITECTURE forever OF oscillating IS
SIGNAL x: BIT := ‘0’;
SIGNAL y: BIT := ‘1’;
BEGIN
X <=y,
y <= NOT x;
END forever;

" QOscillation in Zero Real Time. (b) VHDL Representation;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y¢

Delta Delay

it
0

> t
10 20 30 40 S0 60 70

: > {
10 20 30 40 50 60 70

Oscillation in Zero Real Time. (¢) Signal Waveforms

ol =

_J

April 2019

Sequential Placement of Transactions

ARCHITECTURE sequential OF
sequential placement IS

BEGIN
PROCESS

END PROCESS;
END sequential;

Sequential Placement of Transactions in a Sequential Body of VHDL

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Al

April 2019

Sequential Placement of Transactions

ARCHITECTURE concurrent OF
sequential placement IS

BEGIN
a <= vl, v2 AFTER t1;
X <= a AFTER t2;

END concurrent;

" Sequential Placement of Transactions in a Concurrent Body of VHDL

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yv

April 2019

Signal Drivers

t4 |:t3:| t2
va | | v2 @

Projected Output Waveform

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

YA

April 2019

Signal Drivers

Multiple Drivers of a Resolved Signal

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Resolved
Signal

YA

Transaction Appending Rules

INERTIAL

New Transaction 9
is BEFORE Overwrlte Overwrlte Overwrité
Already Existing existing transaction existing transactien existing transaction

New Transaction

iISAFTER Append Append Append
Already Existing the néw transaction the new transaction| \ the new transactio

Overwrite Overwrite
existing transaction existing transaction

= Effective Transactions on the Driver of a Signal
when Multiple Transactions Are Sequentially

Placed on the Signal Driver Append

: : The new transaction
VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Transaction Appending Rules

casel: PROCESS BEGIN -- Transport, Before
wl <= ‘1’ AFTER 5 NS;
wl <= TRANSPORT ‘0’ AFTER 3 NS;
WAIT;

END PROCESS casel; —-- Overwrites existing

= Transport Delay, Before Existing Transactions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

April 2019

Transaction Appending Rules

Transport Delay, Befote Existing Transactions (continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

vy

April 2019

Transaction Appending Rules

case2: PROCESS BEGIN -- Transport, After
w2 <= ‘1’ AFTER 5 NS;
w2 <= TRANSPORT ‘0’ AFTER 8 NS;
WAIT

END PROCESS case2; —-- Appends to existing

= Transport Delay After Existing Transaction

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y

April 2019

Transaction Appending Rules

Transport Delay After Existing Transaction

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Ye

April 2019

Transaction Appending Rules

case3a: PROCESS BEGIN -- Inertial, Before
w3a <= ‘1’ AFTER 5 NS;
w3a <= INERTIAL ‘0’ AFTER 3 NS;
WAIT;
END PROCESS case3a; —-- Overwrites existing
case3b: PROCESS BEGIN -- Reject, Before
w3b <= ‘1’ AFTER 5 NS/

WSLRS=RREYB(CTS N SRR ERATAAATE 0 KA ST B RIS NS
WAIT;
END PROCESS case3b,; —-- Overwrites existing

Inertial or Inertial with Reject, Before Existing

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

April 2019

Transaction Appending Rules

Inertial or Inertial with Reject, Before Existing (continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

1

April 2019

Transaction Appending Rules

caseda: PROCESS BEGIN -- Inertial, After, Vn=Ve
wda <= 'O’ AFTER 5 NS;
wda <= INERTIAL. ‘0’ AFTER 8 NS;
WAIT;

END PROCESS caseda; —-- Appends to existing

casedb: PROCESS BEGIN -- Reject, After, Vn=Ve
widb <= ‘0’ AFTER 5 NS,

B

e o

WAIT;
END PROCESS casedb; -- Appends to existing

Inertial or Inertial with Reject, Same Value Transaction After Existing

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

v

April 2019

Transaction Appending Rules

Inertial or Inertial with Reject, Same Value Transaction After Existing
(continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

YA

April 2019

Transaction Appending Rules

case5: PROCESS BEGIN -- Inertial, After, Vn/=Ve
wS <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case5; -- Overwrites existing

Inertial Delay, Different Value Transaction After Existing

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A

Transaction Appending Rules

= Inertial Delay, Different Value Transaction After Existing (continued)

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Transaction Appending Rules

case6: PROCESS BEGIN
—-— Reject, After, Vn/=Ve, Diff <= Reject
w6 <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case6; —-- Overwrites existing

Inertial with Reject, Different Values, After Existing, Reject Occuts

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

£

April 2019

Transaction Appending Rules

Inertial with Reject, Different Values, After Existing, Reject Occuts

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢y

Transaction Appending Rules

case’/: PROCESS BEGIN
-— Reject, After, Vn/=Ve, Diff > Reject
w/ <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case’/,; -- Appends to existing

= with Reject, Different Values, After Existing, Reject Doesn’t Occur

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

¢y

April 2019

Transaction Appending Rules

Inertial with Reject, Different Values, After Existing, Reject Doesn’t
Occur

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

123

April 2019

Pulse Rejection

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

N— N

|

= Pulse Rejection in Inertial, Reject, and Transport Delay

[

l—dI 0l N

Pulse Rejection

target 1 |

: A B

w@a3§

0

= New, Pending, and Expired Transactions on the Targets of previous
slide

VHDL: Modular Design and Synthesis of Cores and

April 2019 Systems Copyright Z. Navabi

April 2019

Pulse Rejection

target 1 g

target 2 |

New, Pending, and Expired Transactions on the Targets of ptevious
slide (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢y

April 2019

Placing Waveform Elements

ARCHITECTURE delay OF example IS
SIGNAL a, b, BIT := ‘0’;

BEGIN
a <= ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;
b <= '0’, a AFTER 3 NS;

END ARCHITECTURE delay;

[L [
IR [B

" Sequential Placement of Transactions by Concurrent Assignments

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

EA

Resolving between Multiple Driving Values

= Pass Transistor Based Multiplexer

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

¢q

Resolving between Multiple Driving Values

ENTITY multiplexer IS
PORT (a, b, s : IN v4l; w : OUT v4l) ;
END ENTITY
—— Does not compile
ARCHITECTURE wired OF multiplexer IS
SIGNAL y : wiring v4l;
BEGIN
Tl: y <= a WHEN s=‘'0’" ELSE 'Z';
T2: y <= b WHEN s=‘'1’ ELSE 'Z';
w <= YV’
END ARCHITECTURE wired;

" Multiplexer Circuit, T'wo Concurrent Assignments (IDoes Not Compile)

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

Resolving a Pair of Values

CONSTANT v4l wire table
‘X => (X', X', X',
‘0 => (X', ‘0’', X',
‘17 => (X', X', ‘1’,
\Z2' => (X', 0’, ‘17,
BEGIN
RETURN v4l wire table (a,
END wire;

FUNCTION wire (a, b : v4l) RETURN v4l IS

vdl 2d := (
‘X’) /

‘0’) /

‘17),
‘Z27)) ;

b)

" Resolving Every Pair of Values of v4/ Type

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

o)

April 2019

Resolving Multiple Driving Values

FUNCTION wiring (: e RETURN v41 IS
VARIABLE accumulate : v4l = 'Z';
BEGIN
FOR 1 IN drivers'RANGE LOOP
accumulate := wire (accumulate, drivers(i)) ;
END LOOP;
RETURN accumulate;
END wiring;

= Wiring Resolution Functioh, an Array Version ot Wire

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

oy

Applying a Resolution Function

ARCHITECTURE wired OF multiplexer IS
SIGNAL y : wiring v4l;

BEGIN
Tl: y <= a WHEN s=‘'0’" ELSE 'Z';
T2: y <= b WHEN s=‘'1’" ELSE 'Z';
w <= YV’

END ARCHITECTURE wired;

" Wotking Architecture for Multiplexer

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Resolution Package

FUNCTION wiring (drivers : v4l vector) RETURN v4l;

SUBTYPE wired v4l IS wiring v4l;
TYPE wired v4l vector IS
ARRAY (NATURAL RANGE <>) OF wired_v4l;

" Resolution Related Declarations

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

o¢

Resolution Package

LIBRARY utilities;

USE utilities.Veriloglogic.ALL;

ENTITY multiplexer n4 IS

PORT (a, b, ¢, d : IN wired v4l vector;

s : IN wired v4l vector (1 DOWNTO O) ;
w : OUT wired v4l vector) ;

END ENTITY ;

ARCHITECTURE wired OF multiplexer n4d IS

BEGIN -- Four Bus Connections

P el
BASSEHr

P el
BASSEHr

P el
BAlSSHr

END ARCHITECTURE wired;

= Using Resolved Multi-bit Busses

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

A Resolution Package

PACKAGE VerilogLogic IS
FUNCTION oring (drivers : v4l vector) RETURN v4l;
SUBTYPE ored v4l IS oring v4l;
TYPE ored v4l vector IS
ARRAY (NATURAL RANGE<>)OF ored v4l;

END PACKAGE Veriloglogic;
PACKAGE BODY Veriloglogic IS
FUNCTION oring (drivers : v4l vector) RETURN v4l IS

VARIABLE accumulate : v41l := ‘0’ ;
BEGIN
FOR 1 IN drivers'RANGE LOOP
accumulate := accumulate OR drivers (i) ;
END ILOOP;
RETURN accumulate;
END oring;

END PACKAGE BODY VeriloglLogic;

= Package Description for Oring Resolution Function

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Relation to Sequential Transactions

t4 | t3 | t2 | tl
vd | v3|v2]|Vl
t4 | t3 | t2 | t1

vd | v3|v2]|Vl ."‘
t4 | t3 | t2 | t1
vd | v3|v2]|Vl

Projected Output Waveforms of Resolution Function

020

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

ov

Resolutions with Guarded Assignments

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
ENTITY selection lofn IS
PORT (ins : IN wired v4l vector;
sel : IN wired v4l vector;
w : OUT wired v4l) ;
END ENTITY ;
ARCHITECTURE wired OF selection lofn IS
SIGNAL y : wired v4l BUS;
BEGIN

Mi: FOR i IN ins'RANGE GENERATE

T BLOCK (Sei (4 VAN BECTN

ENDEBINOCKITEN
END GENERATE Mi;
w <=Y;

END ARCHITECTURE wired;

=]-of-n Selection LLogic Assign Guarded Assignments

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Resolutions with Guarded Assignments

= NMOS Transistor Based Selection LLogic

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

014

Resolutions with Guarded Assignments

t4 | t3 | t2]|tl
vd | v3|v2]|Vvl

<

t4 | t3 |1 t2]|tl
vd | v3|v2]|Vvl

" Guarded Signal Assignments into Resolved Signals

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

April 2019

Simple Assignments

Resolutions
With
Guarded
Assignments

|
| | |
BUS Kind REG¥STER No Kind

Kind
Resolved - Resolved

. Resolved .
Signal el Signal

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

1)

April 2019

REGISTER Kind Resolved Signal

= NMOS Half-Register with Selection LLogic

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

1y

April 2019

REGISTER Kind Resolved Signal

ARCHITECTURE wired reg OF selection lofn IS
SIGNAL y : wired v4l REGISTER;
BEGIN
Mi: FOR i IN ins'RANGE GENERATE
Ti: BLOCK (sel(i) = ‘1’) BEGIN
y <= GUARDED ins (1)
END BLOCK Ti;
END GENERATE Mi;
w <= NOT y;
END ARCHITECTURE wired reg;

Using REGISTER Kind for Selection LLogic with Half-Registet

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

1y

April 2019

Comparing Disconnections

LLast Disconnections. (a) BUS Kind; (b) REGISTER Kind; (c) no Kind

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢

April 2019

Resolving Right and Left Signals
&

t4 | t3 | t2 | tl '
vd | v3 | v2 | vl .|‘

Resolved Signals on Right- and Left-Hand Sides

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

10

] Resolving INOUT Signals

Entity N/ Entity
%
— T

. \Y (=

f

/\ " Connecting INOUT Ports Require Resolved Signals. (a) VHDL Code;
(b) Graphical Notation

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

1

Summary

What we covered in this chapter were
= discuss sequential and concurrent assignments of values to signals

= took a limited look of a single driver and only discussed how
sequential transactions affect a signal driver

= showed how multiple driving values interact for tesolving a value for a
signal with multiple concurtent drivers

= topics of sequential placement of transactions and resolution
functions

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi 1y

Acknowledgment

Slides developed by:
Nadereh Hatami
[Last edited April 2019, by:
Saba Yousefzadeh

VHDL: Modular Design and Synthesis of Cores and
April 2019 Systems Copyright Z. Navabi

TA

