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Timing and Concurrency of Operations

=

B

=  Jllustrating Timing and Concurrency
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Sequential Modeling

i1 := NOT s;

J := a AND 1;
K := s AND b;
W := jJ OR k;

"  Modeling a Multiplexer with Sequential Statements
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Concurrent Modeling

ENTITY mux IS
PORT (a, b, s : IN BIT; w : OUT BIT)
END ENTITY;
ARCHITECTURE concurrent of mux IS
SIGNAL 1, j, k : BIT;
BEGIN
= SINOAESENAE
=AY T IRNAT

IRANIDESEA b

END ARCHITECTURE concurrent;

®  Modeling a Multiplexer with Concurtent Statements
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Concurrent Modeling

= Timing of Signals of Concurrent Description of previous Multiplexer
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Signal Assignments

ENTITY example IS END ENTITY;

ARCHITECTURE delay OF example IS ___S___Z__

SIGNAL waveform : BIT;

BEGIN

—— Inertial delay :: Passes >= 5, Eliminates < 5
<= /b v Eo)el l:*‘i’i’._.% St NS

INERTIAL waveform AFTER 5 NS;

ANBYIE :-‘

ABElBH NS
—— Creatlng waveform (not shown)
waveform <= —-- P5, N6, P4, N6, P3, N6, P2, P6,
-- N5, P6, N4, P6, N3, P6, N2, N6;

END delay;

Va8 —

N

s

= VHDL Description for the Demonstration of Delay Mechanisms
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Inertial Delay Mechanism

= The RC Delay is Best Represented by an Inertial Delay Mechanism
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Comparing Inertial and Transport

(L)

L=

5 <= =

5 ¢ 2

= Illustrating Differences between Delay Mechanisms in VHDL

A e RS
>
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Concurrent Assignments

(<

Resolving a Single Value from Multiple Driving Values
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Events and Transactions

¥*
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Events and Transactions

ARCHITECTURE demo OF example IS
SIGNAL a, b, ¢ : BIT := ‘0’ ;
BEGIN
a <= ‘'1l’” AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;
END demo;

A Simple Description for Illustrating Events and Transactions
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Events and Transactions

1
(—

Events and Transactions that Occur on Signals in previous slide : (a)
The Resulting Timing Diagram Showing Transactions when they
become Current;
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Events and Transactions

1,15) on a
(1,05 o0nb

(0,10)on c

Events and Transactions that Occur on Signals in previous slide : (b)

Transactions when they are Placed on Signals;
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Events and Transactions

Events and Transactions that Occur on Signals in previous slide : (c)
Transactions as their Time Values Approach Zero to Become Current;
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Events and Transactions

Events and Transactions that Occur on Signals in previous slide : (d)

Transactions from Creation to Expiration
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Delta Delay

ENTITY timing IS

PORT (a, b : IN BIT; z, zbar

END ENTITY

ARCHITECTURE delta
BEGIN

Zh A<= ENOTIZS

—_—

Z =0 AN D IS SAHEL

—

END delta;

of timing IS

ERSTONNSY

BUFFER BIT) ;

Demonstrating Need for Delta Delay
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Sequential Wait Statements

ENTITY mux IS
PORT (a, b, s : IN BIT; w : OUT BIT)
END ENTITY;
ARCHITECTURE concurrent of mux IS
SIGNAL 1, j, k : BIT;
BEGIN
i <= NOT s;
J <= a AND 1i;
k <= b AND s;
w <= 7 OR k AFTER 36 NS;
END ARCHITECTURE concurrent;

VHDL Description for Demonstrating the Delta Delay
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Delta Delay

1 NNl Nr—
— =]

Timing Diagram for the Description of Figure 7.13, Showing Delta
Delays
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Delta Delay

ARCHITECTURE concurrent OF timing demo IS
SIGNAL. a, b, ¢ : BIT := ‘0’;
BEGIN
a <= ‘1’;
b <= NOT a;
c <= NOT b;
END concurrent;

Chain of Two Inverters, Delta Time, Transactions, and Concurrency
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Delta Delay

o
—

Timing Diagram for the tming demo Description of ptevious slide
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Delta Delay

Oscillation in Zero Real Time. (a) Circuit to Model;
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Delta Delay

ARCHITECTURE forever OF oscillating IS
SIGNAL x: BIT := ‘0’;
SIGNAL y: BIT := ‘1’;
BEGIN
X <=y,
y <= NOT x;
END forever;

" QOscillation in Zero Real Time. (b) VHDL Representation;
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Delta Delay
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Oscillation in Zero Real Time. (¢) Signal Waveforms
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Sequential Placement of Transactions

ARCHITECTURE sequential OF
sequential placement IS

BEGIN
PROCESS

END PROCESS;
END sequential;

Sequential Placement of Transactions in a Sequential Body of VHDL
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Sequential Placement of Transactions

ARCHITECTURE concurrent OF
sequential placement IS

BEGIN
a <= vl, v2 AFTER t1;
X <= a AFTER t2;

END concurrent;

" Sequential Placement of Transactions in a Concurrent Body of VHDL
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Signal Drivers

t4 |:t3:| t2
va | | v2 @

Projected Output Waveform
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Signal Drivers

Multiple Drivers of a Resolved Signal
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Transaction Appending Rules

INERTIAL

New Transaction 9
is BEFORE Overwrlte Overwrlte Overwrité
Already Existing existing transaction existing transactien existing transaction

New Transaction

iISAFTER Append Append Append
Already Existing the néw transaction the new transaction| \ the new transactio

Overwrite Overwrite
existing transaction existing transaction

= Effective Transactions on the Driver of a Signal
when Multiple Transactions Are Sequentially

Placed on the Signal Driver Append

: : The new transaction
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Transaction Appending Rules

casel: PROCESS BEGIN -- Transport, Before
wl <= ‘1’ AFTER 5 NS;
wl <= TRANSPORT ‘0’ AFTER 3 NS;
WAIT;

END PROCESS casel; —-- Overwrites existing

= Transport Delay, Before Existing Transactions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR



April 2019

Transaction Appending Rules

Transport Delay, Befote Existing Transactions (continued)
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Transaction Appending Rules

case2: PROCESS BEGIN -- Transport, After
w2 <= ‘1’ AFTER 5 NS;
w2 <= TRANSPORT ‘0’ AFTER 8 NS;
WAIT

END PROCESS case2; —-- Appends to existing

= Transport Delay After Existing Transaction
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Transaction Appending Rules

Transport Delay After Existing Transaction
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Transaction Appending Rules

case3a: PROCESS BEGIN -- Inertial, Before
w3a <= ‘1’ AFTER 5 NS;
w3a <= INERTIAL ‘0’ AFTER 3 NS;
WAIT;
END PROCESS case3a; —-- Overwrites existing
case3b: PROCESS BEGIN -- Reject, Before
w3b <= ‘1’ AFTER 5 NS/

WSLRS=RREYB(CTS N SRR ERATAAATE 0 KA ST B RIS NS
WAIT;
END PROCESS case3b,; —-- Overwrites existing

Inertial or Inertial with Reject, Before Existing
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Transaction Appending Rules

Inertial or Inertial with Reject, Before Existing (continued)
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Transaction Appending Rules

caseda: PROCESS BEGIN -- Inertial, After, Vn=Ve
wda <= 'O’ AFTER 5 NS;
wda <= INERTIAL. ‘0’ AFTER 8 NS;
WAIT;

END PROCESS caseda; —-- Appends to existing

casedb: PROCESS BEGIN -- Reject, After, Vn=Ve
widb <= ‘0’ AFTER 5 NS,

B

e o

WAIT;
END PROCESS casedb; -- Appends to existing

Inertial or Inertial with Reject, Same Value Transaction After Existing
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Transaction Appending Rules

Inertial or Inertial with Reject, Same Value Transaction After Existing
(continued)
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Transaction Appending Rules

case5: PROCESS BEGIN -- Inertial, After, Vn/=Ve
wS <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case5; -- Overwrites existing

Inertial Delay, Different Value Transaction After Existing
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Transaction Appending Rules

= Inertial Delay, Different Value Transaction After Existing (continued)
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Transaction Appending Rules

case6: PROCESS BEGIN
—-— Reject, After, Vn/=Ve, Diff <= Reject
w6 <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case6; —-- Overwrites existing

Inertial with Reject, Different Values, After Existing, Reject Occuts

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

£



April 2019

Transaction Appending Rules

Inertial with Reject, Different Values, After Existing, Reject Occuts
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Transaction Appending Rules

case’/: PROCESS BEGIN
-— Reject, After, Vn/=Ve, Diff > Reject
w/ <= ‘1’ AFTER 5 NS;

WAIT ;
END PROCESS case’/,; -- Appends to existing

= with Reject, Different Values, After Existing, Reject Doesn’t Occur
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Transaction Appending Rules

Inertial with Reject, Different Values, After Existing, Reject Doesn’t
Occur
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Pulse Rejection

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

N— N

|

= Pulse Rejection in Inertial, Reject, and Transport Delay
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Pulse Rejection

target 1 |

: A B

w@a3§

0

=  New, Pending, and Expired Transactions on the Targets of previous
slide
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Pulse Rejection

target 1 g

target 2 |

New, Pending, and Expired Transactions on the Targets of ptevious
slide (Continued)
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Placing Waveform Elements

ARCHITECTURE delay OF example IS
SIGNAL a, b, BIT := ‘0’;

BEGIN
a <= ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;
b <= '0’, a AFTER 3 NS;

END ARCHITECTURE delay;

[ L [
IR [ B

" Sequential Placement of Transactions by Concurrent Assignments
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Resolving between Multiple Driving Values

= Pass Transistor Based Multiplexer
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Resolving between Multiple Driving Values

ENTITY multiplexer IS
PORT (a, b, s : IN v4l; w : OUT v4l) ;
END ENTITY
—— Does not compile
ARCHITECTURE wired OF multiplexer IS
SIGNAL y : wiring v4l;
BEGIN
Tl: y <= a WHEN s=‘'0’" ELSE 'Z';
T2: y <= b WHEN s=‘'1’ ELSE 'Z';
w <= YV’
END ARCHITECTURE wired;

"  Multiplexer Circuit, T'wo Concurrent Assignments (IDoes Not Compile)
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Resolving a Pair of Values

CONSTANT v4l wire table
‘X => (X', X', X',
‘0 => (X', ‘0’', X',
‘17 => (X', X', ‘1’,
\Z2' => (X', 0’, ‘17,
BEGIN
RETURN v4l wire table (a,
END wire;

FUNCTION wire (a, b : v4l) RETURN v4l IS

vdl 2d := (
‘X’) /

‘0’) /

‘17),
‘Z27)) ;

b)

" Resolving Every Pair of Values of v4/ Type
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Resolving Multiple Driving Values

FUNCTION wiring ( : e RETURN v41 IS
VARIABLE accumulate : v4l = 'Z';
BEGIN
FOR 1 IN drivers'RANGE LOOP
accumulate := wire (accumulate, drivers(i)) ;
END LOOP;
RETURN accumulate;
END wiring;

= Wiring Resolution Functioh, an Array Version ot Wire
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Applying a Resolution Function

ARCHITECTURE wired OF multiplexer IS
SIGNAL y : wiring v4l;

BEGIN
Tl: y <= a WHEN s=‘'0’" ELSE 'Z';
T2: y <= b WHEN s=‘'1’" ELSE 'Z';
w <= YV’

END ARCHITECTURE wired;

"  Wotking Architecture for Multiplexer
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Resolution Package

FUNCTION wiring ( drivers : v4l vector) RETURN v4l;

SUBTYPE wired v4l IS wiring v4l;
TYPE wired v4l vector IS
ARRAY (NATURAL RANGE <>) OF wired_v4l;

" Resolution Related Declarations
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Resolution Package

LIBRARY utilities;

USE utilities.Veriloglogic.ALL;

ENTITY multiplexer n4 IS

PORT (a, b, ¢, d : IN wired v4l vector;

s : IN wired v4l vector (1 DOWNTO O) ;
w : OUT wired v4l vector) ;

END ENTITY ;

ARCHITECTURE wired OF multiplexer n4d IS

BEGIN -- Four Bus Connections

P el
BASSEHr

P el
BASSEHr

P el
BAlSSHr

END ARCHITECTURE wired;

= Using Resolved Multi-bit Busses
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A Resolution Package

PACKAGE VerilogLogic IS
FUNCTION oring ( drivers : v4l vector) RETURN v4l;
SUBTYPE ored v4l IS oring v4l;
TYPE ored v4l vector IS
ARRAY (NATURAL RANGE<>)OF ored v4l;

END PACKAGE Veriloglogic;
PACKAGE BODY Veriloglogic IS
FUNCTION oring ( drivers : v4l vector) RETURN v4l IS

VARIABLE accumulate : v41l := ‘0’ ;
BEGIN
FOR 1 IN drivers'RANGE LOOP
accumulate := accumulate OR drivers (i) ;
END ILOOP;
RETURN accumulate;
END oring;

END PACKAGE BODY VeriloglLogic;

= Package Description for Oring Resolution Function
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Relation to Sequential Transactions

t4 | t3 | t2 | tl
vd | v3|v2 ]|Vl
t4 | t3 | t2 | t1

vd | v3|v2 ]|Vl ."‘
t4 | t3 | t2 | t1
vd | v3|v2 ]|Vl

Projected Output Waveforms of Resolution Function

020
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Resolutions with Guarded Assignments

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
ENTITY selection lofn IS
PORT (ins : IN wired v4l vector;
sel : IN wired v4l vector;
w : OUT wired v4l) ;
END ENTITY ;
ARCHITECTURE wired OF selection lofn IS
SIGNAL y : wired v4l BUS;
BEGIN

Mi: FOR i IN ins'RANGE GENERATE

T BLOCK (Sei (4 VAN BECTN

ENDEBINOCKITEN
END GENERATE Mi;
w <=Y;

END ARCHITECTURE wired;

= ]-of-n Selection LLogic Assign Guarded Assignments
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Resolutions with Guarded Assignments

= NMOS Transistor Based Selection LLogic
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Resolutions with Guarded Assignments

t4 | t3 | t2]|tl
vd | v3|v2]|Vvl

<

t4 | t3 |1 t2]|tl
vd | v3|v2]|Vvl

" Guarded Signal Assignments into Resolved Signals
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Simple Assignments

Resolutions
With
Guarded
Assignments

|
| | |
BUS Kind REG¥STER No Kind

Kind
Resolved - Resolved

. Resolved .
Signal el Signal
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REGISTER Kind Resolved Signal

= NMOS Half-Register with Selection LLogic
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REGISTER Kind Resolved Signal

ARCHITECTURE wired reg OF selection lofn IS
SIGNAL y : wired v4l REGISTER;
BEGIN
Mi: FOR i IN ins'RANGE GENERATE
Ti: BLOCK (sel(i) = ‘1’) BEGIN
y <= GUARDED ins (1)
END BLOCK Ti;
END GENERATE Mi;
w <= NOT y;
END ARCHITECTURE wired reg;

Using REGISTER Kind for Selection LLogic with Half-Registet
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Comparing Disconnections

LLast Disconnections. (a) BUS Kind; (b) REGISTER Kind; (c) no Kind
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Resolving Right and Left Signals
&

t4 | t3 | t2 | tl '
vd | v3 | v2 | vl .|‘

Resolved Signals on Right- and Left-Hand Sides
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] Resolving INOUT Signals

Entity N/ Entity
%
— T

. \Y (=

f

/\ " Connecting INOUT Ports Require Resolved Signals. (a) VHDL Code;
(b) Graphical Notation
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Summary

What we covered in this chapter were
= discuss sequential and concurrent assignments of values to signals

= took a limited look of a single driver and only discussed how
sequential transactions affect a signal driver

= showed how multiple driving values interact for tesolving a value for a
signal with multiple concurtent drivers

= topics of sequential placement of transactions and resolution
functions
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