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Timing and Concurrency of Operations

 Illustrating Timing and Concurrency
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i := NOT s;

j := a AND i;

K := s AND b;

W := j OR k;

 Modeling a Multiplexer with Sequential Statements

Sequential Modeling
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ENTITY mux IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE concurrent of mux IS

SIGNAL i, j, k : BIT;

BEGIN

i <= NOT s AFTER 4 NS;

j <= a AND i AFTER 5 NS;

k <= b AND s AFTER 5 NS;

w <= j OR k AFTER 3 NS;

END ARCHITECTURE concurrent;

 Modeling a Multiplexer with Concurrent Statements

Concurrent Modeling
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Concurrent Modeling

 Timing of  Signals of  Concurrent Description of  previous Multiplexer
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 VHDL Description for the Demonstration of  Delay Mechanisms

Signal Assignments
ENTITY example IS END ENTITY;

--

ARCHITECTURE delay OF example IS

SIGNAL waveform : BIT;

SIGNAL target1, target2, target3 : BIT;

BEGIN

-- Inertial delay :: Passes >= 5, Eliminates < 5 

target1 <= waveform AFTER 5 NS; 

-- Inertial with reject :: Passes > 3, Eliminates <= 3

target2 <= REJECT 3 NS INERTIAL waveform AFTER 5 NS;

-- Illustrating transport delay :: Passes all, Eliminates none

target3 <= TRANSPORT waveform AFTER 5 NS;

-- Creating waveform (not shown)

waveform <= -- P5, N6, P4, N6, P3, N6, P2, P6,

-- N5, P6, N4, P6, N3, P6, N2, N6; 

END delay;
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 The RC Delay is Best Represented by an Inertial Delay Mechanism

Inertial Delay Mechanism

Target1 or Target2
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 Illustrating Differences between Delay Mechanisms in VHDL

Comparing Inertial and Transport
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 Resolving a Single Value from Multiple Driving Values

Concurrent Assignments 
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 A Transaction, from Creation to Expiration 

Events and Transactions
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ARCHITECTURE demo OF example IS

SIGNAL a, b, c : BIT := ‘0’;

BEGIN

a <= ‘1’ AFTER 15 NS;

b <= NOT a AFTER 5 NS;

c <= a AFTER 10 NS;

END demo;

 A Simple Description for Illustrating Events and Transactions 

Events and Transactions
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 Events and Transactions that Occur on Signals in previous slide : (a) 
The Resulting Timing Diagram Showing Transactions when they 
become Current;

Events and Transactions
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 Events and Transactions that Occur on Signals in previous slide : (b) 

Transactions when they are Placed on Signals;

Events and Transactions
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 Events and Transactions that Occur on Signals in previous slide : (c) 
Transactions as their Time Values Approach Zero to Become Current; 

Events and Transactions

(c) 0 5 10 15 20 25

Transactions at 5 NS intervals 
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 Events and Transactions that Occur on Signals in previous slide : (d) 

Transactions from Creation to Expiration

Events and Transactions
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Delta Delay 

 Demonstrating Need for Delta Delay

ENTITY timing IS

PORT (a, b : IN BIT; z, zbar : BUFFER BIT);

END ENTITY;

--

ARCHITECTURE delta of timing IS

BEGIN

z_bar <= NOT z;

z <= a AND b AFTER 10 NS;

END delta;
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ENTITY mux IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE concurrent of mux IS

SIGNAL i, j, k : BIT;

BEGIN

i <= NOT s;

j <= a AND i;

k <= b AND s;

w <= j OR k AFTER 36 NS;

END ARCHITECTURE concurrent;

Sequential Wait Statements 

 VHDL Description for Demonstrating the Delta Delay 
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 Timing Diagram for the Description of  Figure 7.13, Showing Delta 
Delays 

Delta Delay
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ARCHITECTURE concurrent OF timing_demo IS

SIGNAL  a, b, c : BIT := ‘0’;

BEGIN

a <= ‘1’;

b <= NOT a;

c <= NOT b;

END concurrent;

 Chain of  Two Inverters, Delta Time, Transactions, and Concurrency

Delta Delay
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Delta Delay

 Timing Diagram for the timing_demo Description of  previous slide 
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Delta Delay

 Oscillation in Zero Real Time. (a) Circuit to Model;

y x

Ideal elements with 

zero real time delay
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ARCHITECTURE forever OF oscillating IS

SIGNAL  x: BIT := ‘0’;

SIGNAL  y: BIT := ‘1’;

BEGIN

x <= y;

y <= NOT x;

END forever;

 Oscillation in Zero Real Time. (b) VHDL Representation;

Delta Delay
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Delta Delay

 Oscillation in Zero Real Time. (c) Signal Waveforms
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 Sequential Placement of  Transactions in a Sequential Body of  VHDL 

Sequential Placement of Transactions 

ARCHITECTURE sequential OF 

sequential_placement IS

. . .

BEGIN

PROCESS

x <= v1 AFTER t1;

x <= v2 AFTER t2;

WAIT;

END PROCESS;

END sequential;
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ARCHITECTURE concurrent OF 

sequential_placement IS

. . .

BEGIN

a <= v1, v2 AFTER t1;

x <= a AFTER t2;

END concurrent;

Sequential Placement of Transactions

 Sequential Placement of  Transactions in a Concurrent Body of  VHDL
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 Projected Output Waveform 

Signal Drivers 
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Signal Drivers

 Multiple Drivers of  a Resolved Signal
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 Effective Transactions on the Driver of  a Signal 

when Multiple Transactions Are Sequentially 

Placed on the Signal Driver 

Transaction Appending Rules 
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case1: PROCESS BEGIN -- Transport, Before

w1 <= ‘1’ AFTER 5 NS;

w1 <= TRANSPORT ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case1; -- Overwrites existing

Transaction Appending Rules

 Transport Delay, Before Existing Transactions 
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Transaction Appending Rules

 Transport Delay, Before Existing Transactions (continued) 
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case2: PROCESS BEGIN -- Transport, After

w2 <= ‘1’ AFTER 5 NS;

w2 <= TRANSPORT ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case2; -- Appends to existing

Transaction Appending Rules

 Transport Delay After Existing Transaction
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 Transport Delay After Existing Transaction

Transaction Appending Rules
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 Inertial or Inertial with Reject, Before Existing

Transaction Appending Rules

case3a: PROCESS BEGIN -- Inertial, Before

w3a <= ‘1’ AFTER 5 NS;

w3a <= INERTIAL ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case3a; -- Overwrites existing

--

case3b: PROCESS BEGIN -- Reject, Before

w3b <= ‘1’ AFTER 5 NS;

w3b <= REJECT 3 NS INERTIAL ‘0’ AFTER 3 NS;

WAIT;

END PROCESS case3b; -- Overwrites existing
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 Inertial or Inertial with Reject, Before Existing (continued)

Transaction Appending Rules

0 1 2 3 4 5 6 7 8 9

Z

w3

Z

5 ns

‘1’ ‘Z’

0 3 ns

‘0’ ‘Z’

0 

0

w3 w3



April 2019 37

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial or Inertial with Reject, Same Value Transaction After Existing 

Transaction Appending Rules

case4a: PROCESS BEGIN -- Inertial, After, Vn=Ve

w4a <= ‘0’ AFTER 5 NS;

w4a <= INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case4a; -- Appends to existing

--

case4b: PROCESS BEGIN -- Reject, After, Vn=Ve

w4b <= ‘0’ AFTER 5 NS;

w4b <= REJECT 8 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case4b; -- Appends to existing
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 Inertial or Inertial with Reject, Same Value Transaction After Existing
(continued)

Transaction Appending Rules
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 Inertial Delay, Different Value Transaction After Existing

Transaction Appending Rules

case5: PROCESS BEGIN -- Inertial, After, Vn/=Ve

w5 <= ‘1’ AFTER 5 NS;

w5 <= INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case5; -- Overwrites existing



April 2019 40

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial Delay, Different Value Transaction After Existing (continued)

Transaction Appending Rules
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case6: PROCESS BEGIN 

-- Reject, After, Vn/=Ve, Diff <= Reject

w6 <= ‘1’ AFTER 5 NS;

w6 <= REJECT 4 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case6; -- Overwrites existing

 Inertial with Reject, Different Values, After Existing, Reject Occurs 

Transaction Appending Rules
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 Inertial with Reject, Different Values, After Existing, Reject Occurs 

Transaction Appending Rules
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case7: PROCESS BEGIN 

-- Reject, After, Vn/=Ve, Diff > Reject

w7 <= ‘1’ AFTER 5 NS;

w7 <= REJECT 2 NS INERTIAL ‘0’ AFTER 8 NS;

WAIT;

END PROCESS case7; -- Appends to existing

 with Reject, Different Values, After Existing, Reject Doesn’t Occur

Transaction Appending Rules



April 2019 44

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Inertial with Reject, Different Values, After Existing, Reject Doesn’t 
Occur

Transaction Appending Rules
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Pulse Rejection 

 Pulse Rejection in Inertial, Reject, and Transport Delay 
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Pulse Rejection 

 New, Pending, and Expired Transactions on the Targets of  previous 
slide
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Pulse Rejection 

 New, Pending, and Expired Transactions on the Targets of  previous 
slide (Continued)
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Placing Waveform Elements 

 Sequential Placement of  Transactions by Concurrent Assignments

ARCHITECTURE delay OF example IS

SIGNAL a, b, BIT := ‘0’;

BEGIN

a <= ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;

b <= ‘0’, a AFTER 3 NS;

END ARCHITECTURE delay;

0 5 10 15

a

b

3 8 13
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Resolving between Multiple Driving Values 

 Pass Transistor Based Multiplexer 
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ENTITY multiplexer IS 

PORT (a, b, s : IN v4l; w : OUT v4l);

END ENTITY;

--

-- Does not compile

ARCHITECTURE wired OF multiplexer IS

SIGNAL y : wiring v4l;

BEGIN

T1: y <= a WHEN s=‘0’ ELSE 'Z';

T2: y <= b WHEN s=‘1’ ELSE 'Z';

w <= y;

END ARCHITECTURE wired;

 Multiplexer Circuit, Two Concurrent Assignments (Does Not Compile)

Resolving between Multiple Driving Values
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FUNCTION wire (a, b : v4l) RETURN v4l IS

CONSTANT v4l_wire_table : v4l_2d := (

‘X’ => (‘X’, ‘X’, ‘X’, ‘X’),

‘0’ => (‘X’, ‘0’, ‘X’, ‘0’),

‘1’ => (‘X’, ‘X’, ‘1’, ‘1’),

‘Z’ => (‘X’, ‘0’, ‘1’, ‘Z’));

BEGIN

RETURN v4l_wire_table (a, b)

END wire;

 Resolving Every Pair of  Values of  v4l Type  

Resolving a Pair of Values 
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FUNCTION wiring ( drivers : v4l_vector) RETURN v4l IS

VARIABLE accumulate : v4l := 'Z';

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := wire (accumulate, drivers(i));

END LOOP;

RETURN accumulate;

END wiring;

 Wiring Resolution Function, an Array Version of  Wire

Resolving Multiple Driving Values 
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ARCHITECTURE wired OF multiplexer IS

SIGNAL y : wiring v4l;

BEGIN

T1: y <= a WHEN s=‘0’ ELSE 'Z';

T2: y <= b WHEN s=‘1’ ELSE 'Z';

w <= y;

END ARCHITECTURE wired;

 Working Architecture for Multiplexer

Applying a Resolution Function
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FUNCTION wiring ( drivers : v4l_vector) RETURN v4l;

SUBTYPE wired_v4l IS wiring v4l;

TYPE wired_v4l_vector IS 

ARRAY (NATURAL RANGE <>) OF wired_v4l;

 Resolution Related Declarations 

Resolution Package 
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY multiplexer_n4 IS 

PORT (a, b, c, d : IN wired_v4l_vector; 

s : IN wired_v4l_vector (1 DOWNTO 0);

w : OUT wired_v4l_vector);

END ENTITY;

--

ARCHITECTURE wired OF multiplexer_n4 IS

BEGIN -- Four Bus Connections

BC1: w <= a WHEN s="00" ELSE 

(a'RANGE => 'Z');

BC2: w <= b WHEN s="01" ELSE 

(b'RANGE => 'Z');

BC3: w <= c WHEN s="10" ELSE 

(c'RANGE => 'Z');

BC4: w <= d WHEN s="11" ELSE 

(d'RANGE => 'Z');

END ARCHITECTURE wired;

 Using Resolved Multi-bit Busses

Resolution Package 
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PACKAGE VerilogLogic IS

FUNCTION oring ( drivers : v4l_vector) RETURN v4l;

SUBTYPE ored_v4l IS oring v4l;

TYPE ored_v4l_vector IS 

ARRAY(NATURAL RANGE<>)OF ored_v4l;

. . .

END PACKAGE VerilogLogic;

PACKAGE BODY VerilogLogic IS

FUNCTION oring ( drivers : v4l_vector) RETURN v4l IS

VARIABLE accumulate : v4l := ‘0’;

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := accumulate OR drivers(i);

END LOOP;

RETURN accumulate;

END oring;

. . .

END PACKAGE BODY VerilogLogic;

A Resolution Package 

 Package Description for Oring Resolution Function 
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 Projected Output Waveforms of  Resolution Function

Relation to Sequential Transactions 
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY selection_1ofn IS 

PORT (ins : IN wired_v4l_vector; 

sel : IN wired_v4l_vector; 

w : OUT wired_v4l);

END ENTITY;

--

ARCHITECTURE wired OF selection_1ofn IS

SIGNAL y : wired_v4l BUS;

BEGIN 

Mi: FOR i IN ins'RANGE GENERATE

Ti: BLOCK (sel(i) = ‘1’) BEGIN

y <= GUARDED ins (i);

END BLOCK Ti;

END GENERATE Mi;

w <= y;

END ARCHITECTURE wired;

Resolutions with Guarded Assignments 

 1-of-n Selection Logic Assign Guarded Assignments 
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Resolutions with Guarded Assignments

 NMOS Transistor Based Selection Logic

sel(0)
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w
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Resolutions with Guarded Assignments

 Guarded Signal Assignments into Resolved Signals 
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Simple Assignments 

Simple

Assignments

REGISTER 

Kind 

Resolved 

Signal

No Kind 

Resolved 

Signal

BUS Kind 

Resolved 

Signal

Resolutions

With

Guarded

Assignments



April 2019 62

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 NMOS Half-Register with Selection Logic

REGISTER Kind Resolved Signal 
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ARCHITECTURE wired_reg OF selection_1ofn IS

SIGNAL y : wired_v4l REGISTER;

BEGIN 

Mi: FOR i IN ins'RANGE GENERATE

Ti: BLOCK (sel(i) = ‘1’) BEGIN

y <= GUARDED ins (i);

END BLOCK Ti;

END GENERATE Mi;

w <= NOT y;

END ARCHITECTURE wired_reg;

 Using REGISTER Kind for Selection Logic with Half-Register 

REGISTER Kind Resolved Signal



April 2019 64

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Comparing Disconnections

 Last Disconnections. (a) BUS Kind; (b) REGISTER Kind; (c) no Kind 
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Resolving Right and Left Signals 

 Resolved Signals on Right- and Left-Hand Sides
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Resolving INOUT Signals 

 Connecting INOUT Ports Require Resolved Signals. (a) VHDL Code; 
(b) Graphical Notation 

ENTITY one( a : IN v4l; x: INOUT v4l )…

ENTITY two( b : IN v4l; y: INOUT v4l )…

ENTITY three IS END three;

ARCHITECTURE connecting OF three IS

  SIGNAL w: oring v4l;

BEGIN

  c1: ENTITY WORK.one PORT MAP( a, w );

  c2: ENTITY WORK.two PORT MAP( b, w );

END connecting;

(a)

Entity 

two

(b)

x y

w

Entity 

one
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What we covered in this chapter were 

 discuss sequential and concurrent assignments of values to signals

 took a limited look of a single driver and only discussed how 
sequential transactions affect a signal driver

 showed how multiple driving values interact for resolving a value for a 
signal with multiple concurrent drivers

 topics of sequential placement of transactions and resolution 
functions

Summary



Acknowledgment

Slides developed by:

Nadereh Hatami

Last edited April 2019, by:

Saba Yousefzadeh

April 2019 68

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi


