March 2019

Chapter 6
VHDL LLanguage
Utilities and Packages

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

March 2019

6.1

(W

VHDL Language
Utilities and Packages

Type Declarations and Usage

6.1.1 Enumeration Type for Multi-Value Logic
6.1.2 Using Real Numbets

6.1.3 Type Conversions

6.1.4 Physical Types

6.1.5 Array Declarations

6.1.6 File Type and External File I/O
VHDL Opetators

6.2.1 Logical Operators

6.2.2 Relational Operatots

6.2.3 Shift Operators

6.2.4 Adding Operatots

6.2.5 Sign Operators

6.2.6 Multiplying Operatozrs

6.2.7 Other Operators

6.2.8 Aggregate Operation

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VHDL Language
Utilities and Packages

6.3 Operator and Subprogram Overloading
6.3.1 Operator Overloading
6.3.2 Subptogram Ovetloading

6.4 Other Types and Type-Related Issues
6.4.1 Subtypes
6.4.2 Record Types
6.4.3 Alias Declaration
6.4.4 Access Types
6.4.5 Global Objects
6.4.6 Type Conversions
6.4.7 Standard Nine-Value LLogic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

6.5

6.6

6.7

VHDL Language
Utilities and Packages

Predefined Attributes
6.5.1 Array Attributes
6.5.2 Type Attributes
6.5.3 Signal Attributes
6.5.4 Entity Attributes
6.5.5 User-Defined Attributes

Standard Libraries and Packages
6.6.1 STANDARD Package
6.6.2 TEXTIO Package and ASCII I/O
6.6.3 Std_logic_1164 Package
6.6.4 Std_logic_arith Package

Summary

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Type Declarations And Usage

Type Declarations
And Usage

Enumeration Type
for Multi-Value Logic

Using Real Numbets

Type Conversions Physical Types

File Type and
External File I/0

Array Declarations

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Enumeration Type for Multi-Value Logic

Type Declarations

And Usage
Enumefratlon Iyp e. Using Real Numbets
for Multi-Value Logic
Type Conversions Physical Types

File Type and
External File I/0

Array DDeclarations

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Enumeration Type for Multi-Value Logic

TYPE std logic IS
(\UI,IXI,IOI,I].I’IZI,IWI’ILI’IHI,I_I);

TYPE v41 IS ('X’,’0’,’1’,’Z’) ;

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Enumeration Type for Multi-Value Logic

identifier

enumeration_
element

enumeration_

element enumeration_

type Nt
enumeration_ dyefin_ition definition

element

type_

uoneltepap adhy

enumeration_
element

= Syntax Details of a Type Declaration

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Enumeration Type
for Multi-Value Logic

Enumeration
Type for

Multi-Value
LLogic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Modeling a Four-value Inverter

Enumeration
Type for
Multi-Value

LLogic

Modeling a

Four-value
Inverter

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Modeling a Four-value Inverter

In: a
X| X
O] 1
11 O
Z|l X
Out: w=a

Input-Output Mapping of an Inverter in v4/Logic Value System

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

Modeling a Four-value Inverter

March 2019

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
ENTITY vliog inv IS
GENERIC (tplh, tphl : TIME := 0 NS) ;
PORT (w : OUT wv4l; a : IN v4l) ;
END ENTITY vlog inv;
ARCHITECTURE conditional OF vlog inv IS
BEGIN
w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE
‘0’ AFTER tphl WHEN a = ‘1’ ELSE
‘X" AFTER tplh;
END ARCHITECTURE conditional;

= VHDL Description of an Inverter in v4/ILogic Value System

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VY

March 2019

Modeling a Four-value NAND Gate

Enumeration
Type for
Multi-Value

LLogic

Modeling a

Four-value

NAND Gate

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VY

March 2019

Modeling a Four-value NAND Gate

In1: a
X 0 1 Z

In2: b X| X 1 X X

Z]l X 1 X X

OQut: w=a-b

Input-Output Mapping of a NAND Gate in v4/Logic Value System

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi V¢

March 2019

Modeling a Four-value NAND Gate

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
ENTITY vlog nand2 IS
GENERIC (tplh, tphl : TIME := 0 NS);
PORT (w : OUT wv4l; a, b : IN v4l) ;
END ENTITY vlog nand2;
ARCHITECTURE conditional OF vlog nand2 IS
BEGIN
w <= ‘1’ AFTER tplh WHEN (a=‘1’) NAND (b='1’) ELSE
‘0’ AFTER tphl WHEN (a=‘1’) AND (b=‘1’) ELSE
‘X’ AFTER tplh;
END ARCHITECTURE conditional;

= VHDL Description of a NAND Gate in v4/Logic Value System

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

March 2019

Initial Values of Enumeration Types

Enumeration
Type for
Multi-Value

LLogic

Initial Values of

Enumeration

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

' 1

Initial Values of Enumeration Types

TYPE v4l IS (§%%,’0’,’1’,’2");

The left-most

Element of v47
Type

TYPE v411 IS (@28,’0’ ,’1’ ,’X’);

The left-most

Element of v41/7
Type

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

ARY%

Using Real Numbers

Type Declarations

And Usage
Enumeration Type .
for Multi-Value LLogic Using Real Numbers
Type Conversions Physical Types
File Type and

Array Declarations External File I/0

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YA

Using Real Numbers

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;

ENTITY cmos not IS
GENERIC (c_load : REAL := 0.066E-12) ;
PORT (w : OUT v4l; a : IN v4l) ;
CONSTANT rpu : REAL := 3000.0;
CONSTANT rpd : REAL := 2100.0;

END ENTITY cmos not;

= An Inverter Model with RC Timing Parametets

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

14

Using Real Numbers

ARCHITECTURE rc_timed OF cmos not IS
CONSTANT tplh

TIME := INTEGER (rpu * c_load *1.0E15) * 3 ES;
CONSTANT tphl
TIME := INTEGER (rpd * c_load *1.0E15) * 3 ES;

BEGIN
w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

'0/ AFTER tphl WHEN a = ‘1’ ELSE
\X’ AFTER tplh;
END ARCHITECTURE rc timed;

= An Inverter Model with RC Timing Parameters (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Type Conversions

Type Declarations
And Usage

Enumeration Type
for Multi-Value Logic

Using Real Numbets

Type Conversions Physical Types

File Type and
External File I/0

Array Declarations

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi AR

Type Conversions

Explicit

Conversion

ARCHITECTURE rc time@OF cmos not IS
CONSTANT tplh
TIME) := INTEGER| (rpu * c_load *1.0E15) * 3 FS;
CONSTANT tphl
TIME := INTEGER (rpd * c load *1.0E1l5) * 3 FS;
BEGIN
w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0” AFTER tphl WHEN a = ‘1’ ELSE
‘X’ AFTER tplh;
END ARCHITECTURE rc timed;

= An Inverter Model with RC Timing Parameters (Continued)

VHDL: Modular Design and Synthesis of Cores and

March 2019 Systems Copyright Z. Navabi

Physical Types

Type Declarations
And Usage

Enumeration Type
for Multi-Value Logic

Type Conversions Physical Types

File Type and
External File 1/0

Using Real Numbets

Array Declarations

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yy

Physical Types

TYPE capacitance IS RANGE 0 TO INTEGER’ HIGH
UNITS
ffr;
pfr = 1000 f£fr;
nfr = 1000 pfr;
ufr = 1000 nfr;
mfr = 1000 ufr;
far = 1000 mfr;
END UNITS

= Type Definition for Defining the Capacitance Physical Type

March 2019

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y¢

Physical Types

TYPE resistance IS RANGE 0 TO INTEGER’ HIGH
UNITS
1l o;
ohms = 1000 1 o;
k o = 1000 ohms;
m o = 1000 k o;
g o = 1000 m o;
END UNITS;

March 2019

= Type Definition for Defining the Resistance Physical Type

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

Physical Types

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
USE utilities.BasicUtilities.ALL;

ENTITY cmos not IS
GENERIC (c_load : capacitance := 66 ffr);
PORT (w : OUT v4l; a : IN v4l) ;
CONSTANT rpu : resistance := 3 k o;
CONSTANT rpd : resistance := 2.1 k o;

END ENTITY cmos not;

= Using Resistance and Capacitance Physical Types

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Al

Physical Types

ARCHITECTURE rc timed OF cmos not IS
CONSTANT tplh : TIME :=
(rpu / 1 1 o) * (c_load / 1 £fr) * 3 FS / 1000;
CONSTANT tphl : TIME :=
(rpd / 1 1 o) * (c_load / 1 £fr) * 3 FS / 1000;
BEGIN
w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE
‘0’ AFTER tphl WHEN a = ‘1’ ELSE
‘X’ AFTER tplh;
END ARCHITECTURE rc_timed;

= Using Resistance and Capacitance Physical Types (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Array Declarations

Type Declarations
And Usage

Enumeration Type
tor Multi-Value Logic

Using Real Numbets

Type Conversions Physical Types

Array Declarations File TYPC. and
External File I/0

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YA

March 2019

Array Declarations

TYPE
TYPE
TYPE
TYPE
TYPE

v4l byte IS ARRAY (7 DOWNTO 0) of wv4l;

v4l word IS ARRAY (15 DOWNTO 0) of wv4l;

v4l 4by8 IS ARRAY (3 DOWNTO O, 0 TO 7) of v4l;

v4l lkbyte IS ARRAY (0 to 1023) OF v4l byte;

v4l 8cube IS ARRAY (0 TO 7, 0 TO 7, 0 TO 7) of v4l;

= Declaring Array Types

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

YA

Array Declarations

TYPE
 v4l _byte —— identifier

" DOWNTO range \ discrete_ { Index_
—a range constrained

—— element_subtype _indication

~—~
<
o
lCD
Q.
®
Q
Q
=
Q
=
o
S

uoniulyep Aelse juies}suod

= Syntax Details of an Array Type Declaration

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Array Declarations

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
BEGIN

S

ARCHITECTURE assign OF array test IS

v4l ;

s byte : v4l byte;

s word : v4l word;

s 4dby8 : v4l 4by8;

s _lkbyte : v41l lkbyte;
s 8cube : v41l 8cube;

END ARCHITECTURE assign;

= Signal Assignments Based on Signal Declarations

March 2019

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

Array Declarations

BEGIN
SAl: s byte <= v4l byte (s word (11 DOWNTO 4)) ;
SA2: s <= s 4by8 (0, 7);
SA3: s byte <= s lkbyte (27)
SA4: s <= s lkbyte (23) (3);
SAS5: s byte <= s byte (0) & s byte (7 DOWNTO 1) ;
SA6: s byte (7 DOWNTO 4) <=
s byte(2) & s byte(3) & s byte(4) & s byte(5);
SA7: s byte (7 DOWNTO 4) <=
(s_byte(2), s byte(3), s byte(4), s byte(5))
SA8: (s _byte(0), s byte(l), s byte(2), s byte(3))
<= s byte (5 DOWNTO 2) ;
END ARCHITECTURE assign;

March 2019

= Signal Assignments Based on Signal Declarations (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

vy

March 2019

Array Declarations

SA7: s _byte (7 DOWNTO 4) <=

(s_byte(2), s _byte(3), s byte(4), s byte(5));

Revetsing Bits of s_byre

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y

March 2019

Array Declarations

Array
Declarations

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AT

AyS

Ye

March 2019

Initializing Multidimensional Arrays

Array
Declarations

Initializing

Multidimensional
Arrays

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

Initializing Multidimensional Arrays

SIGNAL s 4by8 : v4l 4by8 :=

(
(\OI, \OI, \11, \11, \ZI, \ZI, \XI, \xl),
(\XI’ \XI’ \OI, \OI, \11, \11, \ZI, \ZI),
(\ZI’ \ZI’ \xI’ \XI’ \OI, \OI, \11, \1/),
(\11, \11, \ZI, \ZI, \xI, \xI, \OI, \OI)
) ;

SIGNAL s 4by8 : v4l 4by8 := (OTHERS => "110000007) ;

SIGNAL s 4by8 : v4l 4by8 := (OTHERS => (OTHERS =>
\ZI));

SIGNAL s 4by8 : v4l 4by8 :=(OTHERS => (0 TO 1 =>
‘1”, OTHERS =>'07)) ;

= Initializing a Two Dimensional Array

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Non Integer Indexing

Array
Declarations

Non Integer

Indexing

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

v

Non Integer Indexing

TYPE v4l 2d IS ARRAY (v4l, v4l) OF v4l;

LIBRARY utilities;

USE utilities.Veriloglogic.ALL;

USE utilities.BasicUtilities.ALL;

ARCHITECTURE tabular OF vlog nand2 IS
CONSTANT v41l nand2 table : v4l 2d := (

(‘X" ,71" ,'X’ ,'X"),
(17 ,71”,71”,71"),
(X’ ,"1" ,70’ ,’X"),
(‘x’/’]"/’x’/’x’));
BEGIN
w <= v4l nand2 table (a, b) AFTER (tplh +tphl)/2;
END ARCHITECTURE tabular;

= Enumeration Type for Discrete Range of a Two-Dimensional Array

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

YA

March 2019

Unconstrained Arrays

Array
Declarations

Unconstrained

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A

Unconstrained Arrays

ITXEPF
v4l vector —— jdentifier

IS

(

NATURAL —— type _mark
Index_
RANGE subtype

5 definition

c
>
P
o)
-
92
—
=
0,
>
®
lQ.
Q
=
=
Q
N
o
®
=N
)
—
o)
5

—— element_subtype_indication —

= Syntax Details of an Unconstrained Array Declaration

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

uonelepap adAy

March 2019

Unconstrained Arrays

PROCEDURE onehot data
SIGNAL target : OUT v4l vector;
CONSTANT ti : TIME,; CONSTANT n : INTEGER)

IS
VARIABLE data : v4l vector (target’RANGE) ;
VARIABLE i : INTEGER := 0;
BEGIN
data (0) := ‘1’ ;
WHILE i1 < n LOOP
data := data(data’RIGHT) & data(data’ LEET DOWNTO 1) ;
target <= TRANSPORT data AFTER ti * 1i;
i :=1i+ 1;
END LOOP,

END PROCEDURE onehot data;

= A Generic Version of the onehot data Procedure

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

&)

Unconstrained Arrays

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;
ENTITY vlog ram IS

PORT (address : IN v4l vector;

cs, rwbar : IN v4l; opr : IN BOOLEAN) ;
END ENTITY vlog ram;

datain : IN v4l_yector; dataout : OUT v4l_yector;

= A Generic Memory Model

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

¢y

Unconstrained Arrays

ARCHITECTURE behavioral OF vlog ram IS
TYPE mem IS ARRAY
(NATURAL RANGE <>, NATURAL RANGE <>) of v4l;
BEGIN

PROCESS
CONSTANT memsize : INTEGER := 2**address’ LENGTH ;

VARIABLE memory : mem (0 TO memsize-1,datain’ RANGE) ;
BEGIN
id: IF opr’ EVENT THEN
IF opr=TRUE THEN
init mem (memory, "memdata.dat") ;
ELSE
dump mem (memory, "memdump.dat")
END IF;
END IF;

= A Generic Memory Model (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Unconstrained Arrays

wr: IF cs = ‘1’ THEN
IF rwbar = ‘0’ THEN —— Writing
FOR 1 IN dataout’ RANGE LOOP
memory (int (address), 1)
END LOOP;
ELSE —— Reading
FOR 1 IN datain’ RANGE LOOP

dataout (i) <= memory (int(address), 1)

END LOOP;
END IF;
END IF;
WAIT ON cs, rwbar, address, datain, opr;
END PROCESS
END ARCHITECTURE behavioral;

datain (1) ;

A Generic Memory Model (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

£¢

March 2019

Unconstrained Arrays

FUNCTION int (invec : v4l vector) RETURN INTEGER IS
VARIABLE tmp : INTEGER := O;
BEGIN
FOR i IN invec’/’ LENGTH - 1 DOWNTO 0O LOOP
IF invec (i) = ‘1’ THEN
tmp = tmp + 2**i;
ELSIF invec (i) = ‘0’ THEN

tmp := tmp;
ELSE
tmp := 0O;
END IF;
END LOOP;
RETURN tmp;

END FUNCTION int;

= Unconstrained Function int

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢o

Unconstrained Arrays

ENTITY vlog ram tester IS END ENTITY vlog ram tester;
ARCHITECTURE timed OF vlog ram tester IS
SIGNAL ramin, ramout : v4l vector (7 DOWNTO O0) ;
SIGNAL addr : v4l vector (5 DOWNTO O) ;
SIGNAL cs, rwbar : v4dl;
SIGNAL operate : BOOLEAN
BEGIN
UUl: ENTITY WORK.vlog ram (behavioral)
PORT MAP (addr, ramin, ramout, cs, rwbar, operate) ;
operate <= TRUE AFTER 5 NS, FALSE AFTER 400 NS;
cs <= ‘0’, ‘1’ AFTER 15 NS, ‘0’ AFTER 337 NS;
rwbar <= ‘1’, ‘1’ AFTER 190 NS;
addr <= "101100" AFTER 020 NS, "101110" AFTER 040 NS
ramin <= "11110001"™ AFTER 010 NS,
END ARCHITECTURE timed;

= Testbench Instantiating an Unconstrained Memory

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

File Type and External File I/O

Type Declarations
And Usage

Enumeration Type
for Multi-Value Logic

Using Real Numbets

Type Conversions Physical Types

. File Type and
Array Declarations External File I/0O

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi ¢y

March 2019

File Type and External File I/O

File Type and
External File I/0

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢A

March 2019

Opening and Closing Files

File Type and
External File I/0

Opening and

Closing Files

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢9

March 2019

Opening and Closing Files

TYPE

FILE

FILE

FILE

FILE

FILE

logic data IS EFILE OF CHARACTER;

input logic value filel
logic data;
input logic value file2
logic data IS
input logic value file3
logic data OPEN READ MODE IS

output logic value filel
logic data;
output logic value fileZ
logic data OPEN WRITE MODE IS

“input.dat”;

“input.dat”;

“input.dat”;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

March 2019

Opening and Closing Files

FILE OPEN (input logic value filel,
“input.dat”, READ MODE) ;

FILE OPEN (output logic value filel,
“output.dat”, WRITE MODE) ;

type may be included as the first
parameter of the FILE OPEN statement:

= OPEN OK
= STATUS ERROR
s NAME ERROR
s MODE ERROR

FILE CLOSE (input logic value filel);
FILE CLOSE (output logic value filel);

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

o)

March 2019

File READ and WRITE Operations

File Type and
External File I/0

File READ

and WRITE
Operations

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

oy

March 2019

File READ and WRITE Operations

TYPE v4lfiletype IS FILE OF CHARACTER;
PROCEDURE init mem
(VARIABLE memory: OUT mem;
CONSTANT datafile: STRING)
IS
FILE v4ldata : v4lfiletype;
VARIABLE védlvalue : v4dl;
VARIABLE char : CHARACTER;
BEGIN

END PROCEDURE init_mem;

= Reading an External File

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

oy

March 2019

File READ and WRITE Operations

BEGIN
FILE OPEN (wv4ldata, datafile, READ MODE) ;
FOR i1 IN memory’ RANGE (1) LOOP
FOR j IN memory’REVERSE RANGE (2) LOOP
READ (v4ldata, char) ;

vdlvalue := chartov4l (char) ;
memory (i,3J) := chartov4l (char);
END LOOP;
READ (wv4ldata, char) ;
READ (v4ldata, char); —-- read cr 1f
END LOOP;

END PROCEDURE init_mem;

Reading an External File (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

o¢

March 2019

File READ and WRITE Operations

PROCEDURE dump mem
(VARIABLE memory: IN mem, CONSTANT datafile: STRING)

IS

FILE v4ldata : v4lfiletype;

VARIABLE vé4lvalue : v4l; VARIABLE char : CHARACTER;
BEGIN

FILE OPEN (v4ldata, datafile, WRITE MODE) ;
FOR 1 IN memory’RANGE (1) LOOP
FOR j IN memory’ REVERSE RANGE (2) LOOP

vdlvalue := memory (i, Jj);
WRITE (v4ldata, v4ltochar (wv4lwvalue)) ;
END LOOP;
WRITE (w4ldata, cr) ;
END LOOP;

END PROCEDURE dump mem;

Writing into an External File

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

oo

March 2019

Passing Files

File Type and
External File I/0

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Passing Files

o1

March 2019

VHDL Operatots

ILogical
Operatots

Shift
Operatots

Sign
Opetatots

Other

Operatots

VHDL
Operators

Relational
Operatots

Adding

Operatots
Multiplying
Operatots
Aggoregate

Operation

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Logical Operators

VHDL
Operators
Logical Relational
Operators Operatots
Shift Adding
Operatots Operatots
Sign Multiplying
Operatots Operators
Othet Aggotegate
Operatots Operation

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Logical Operators

= Logical Operatots:
- AND, OR, NAND, NOR, XOR, XNOR, and NOT
= Example: x <= a XNOR b;

= Logical operators petform on predefined types BIT, BOOLEAN and
BIT_VECTOR.

= Strings representing opetator symbaols can be used as function names fot
petforming the same function as the operator they are representing:

- Example: X <= “XOR” (a, b) ;

X vector <= "AND” (a vector, b wvector) ;

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Relational Operators

VHDL
Operators
ILogical Relational
Opetatots Operators
Shift Adding
Operatots Operatots
Sign Multiplying
Opetatots Operatots
Other Aggoregate
Operatots Operation

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Relational Operators

= Relational operators operate on operands of the same type and return a
BOOLEAN TRUE or FALSE value.

= Operators in this group are

= =, /=, <, <=, >, and >= with equal, not equal, less than, less than ot
equal, greater than, and greater than or equal functionalities.

= The = and /= operators operate on opetands of any type. The other
relational operatots petform their normal functions when used with
scalar operands.

= When array operands are used with these operators (<, <=, >, and >=),
they petform ordering operations and return TRUE or FALSE based on

values of array elements starting from the left.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi 1)

March 2019

Shift Operatots

VHDL
Operators

ILogical
Operatots

Shift
Operators

Sign
Operatots
Other

Operatots

Relational
Operatots

Adding

Operatots
Multiplying
Operatots
Aggoregate

Operation

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

1y

Shift Operators

Shift/Rotate Left/Right Logical/Arithmetic
SLLL. Shift Left Logical
SILA Shift Left Arithmetic
SRL Shift Right Logical
SRA Shift Right Arithmetic
ROL Rotate Left Logical
ROR Rotate Right Logical

March 2019

Shift Operatots

Startwithav=Z2 0 1 X Z 1 0 1
01 X2zZ2101X
01 Xz1011
XZ01XZ 10
Z Z 01 X Z 10

01 X2zZ2101Z

1 201X Z2 10
Application of Shift Operatots

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

¢

Adding Operators

VHDL
Operators
ILogical Relational
Operatots Operatots
Shift Adding
Opetators Operators
Sign Multiplying
Opetatots Operators
Other Agotegate
Operatots Operation

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Adding Operators

= Addition, subtraction, and concatenation form the adding group of operatots.

= Add and subtract are defined for numeric types of INTEGER and REAL.
= Both operands of an adding operator must have the same type.

= Add and subttract for BIT ot BIT VECTOR types, but VHDL
packages for defining such operations are available.

= As with other operators, an adding opetator can be used in the following two
formats:
= at+b
. S (a, b)

= Operands of a concatenation operator must be arrays or elements of the same
type. Concatenating two scalatrs of the same type forms an array of size 2.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi "

March 2019

Sign Operators

ILogical
Operatots

Shift
Operatots

Sign
Operators
Other

Operatots

VHDL
Operators

Relational
Operatots

Adding

Operatots
Multiplying
Operatots
Aggoregate

Operation

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

1y

Sign Operators

= Sign operators + and — are unary operatots that apply to numeric types.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

TA

March 2019

Multiplying Operators

ILogical
Operatots

Shift
Operatots

Sign
Opetatots

Other

Operatots

VHDL
Operators

Relational
Operatots

Adding

Operatots

Multiplying
Operators

Agotegate

Operation

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

19

Multiplying Operators
= The four multiplying operators ate *, /, MOD, and REM.

= Multiplication and division have their conventional mathematical meanings and
are defined for operands of the same type of INTEGER or REAL.

= Both operands of MOD and REM operators must be of the INTEGER type.

= The remainder, REM, operator teturns the temainder of integer division of the
absolute value of its left operand by the absolute value of its right opetand. The
sign of the result is the same as that of the left operand.

= The modulus, MOD, operator calculates the modulus of its left and right
operands. The sign of the result is the same as that of the right operand.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi R

March 2019

Other Operators

VHDL
Operators

ILogical
Operatots

Shift
Operatots

Sign

Opetatots

Other
Operators

Relational
Operatots

Adding

Operatots
Multiplying
Operators
Agotegate

Operation

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Y

March 2019

Other Operators

= *% (exponential)
= ABS (absolute value)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

YY

March 2019

Aggoregate Operation

ILogical
Operatots

Shift
Opetatots

Sign
Operatots

Other

Operatots

\500)5
Operatots

Relational
Operatots

Adding

Operatots

Multiplying
Operatoxs

Aggregate
Operation

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yy

Aggregate Operation

An aggregate operation combines one or more values into a complex array or record type.
Assuming a and b are objects of BIT type:
= (a,b),a &b are equivalent

= The first expression uses an aggregate operation to form a 2-bit vector, and the second
expression concatenates a and b together. A

Aggregate operation can only be applied to elements of the same size and type.

Concatenation, on the other hand, can be used to concatenate different-size arrays of the same
element type.

An aggregate operation applies to records as well as arrays.

An aggregate can be done on the left-hand side of a signal assignment:
= (a, b) <=a2;
= (a, b) <= 107
= (3, b) <= (1, 0);

VHDL: Modular Design and Synthesis of Cores and

March 2019 Systems Copyright Z. Navabi \&:

Operator and Subprogram
Overloading

Operator and
Subprogtram
Ovetloading

Operator Subprogram
Overloading Ovetloading

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Operator Overloading

Operator and
Subprogram
Overloading

Operator Subptrogram
Overloading Overloading

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A

Operator Overloading

aa X 0 1 Z aa X 0 1 Z X

b: X[X | 0] X | X b:X| X | X X a: X[X

o 0] 0]0]|O O X110] 1(X o 1

1 X | 0O 1] X 11 1(1]1 1(O

Zl X[0| X[X ZI X | X[1| X Z[X

w=a-b w=a+b W =a
) (b) (c)
= Verilog 4-Value Logic Operations Used tor v4/

Operator Overloading

FUNCTION "AND"” (a, b : v41) RETURN v4l IS
CONSTANT v4l and table : v41l 2d := (
‘X => ('X/,707,’'X','X"),
\OI => (‘0’,’0’,’0’,’0’),
‘1= ('X7,707,717, X)),
'z => (‘X707 ,'X','X")) ;
BEGIN
RETURN v41l and table (a, b);
END "AND"

= Opverloading AND Logical Function for the v4l Four Value LLogic System

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Operator Overloading

LIBRARY utilities;
USE utilities.Veriloglogic.ALL;

ENTITY multiplexer IS
PORT (a, b, s : IN v4l; w : OUT v4l) ;
END ENTITY;
ARCHITECTURE booloeanlevel OF multiplexer IS
BEGIN
w <= (a AND NOT s) OR (b AND s) ;
END ARCHITECTURE booloeanlevel;

= Using Overloaded Operators

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

v4

Operator Overloading

FUNCTION "*" (a : resistance; b : capacitance)
RETURN TIME IS
BEGIN
RETURN ((a /11lo0) * (b /1Cffr) * 1 FsS) /
1000;

END "*" ’

= Opverloading: Multiplying Resistance and Capacitance Resulting TIME

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Subprogram Overloading

Operator and
Subprogtram
Ovetloading

Operatot Subprogram
Overloading Overloading

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A)

March 2019

Subprogram Overloading

TYPE mem IS ARRAY (NATURAL RANGE <>,
NATURAL RANGE <>) of BIT;
TYPE bit filetype IS FILE OF CHARACTERj;

PROCEDURE dump mem (VARIABLE memory : IN mem;
CONSTANT datafile : STRING)
FILE BIT data : BIT filetype;
VARIABLE BIT value : BIT;
TYPE BIT char IS ARRAY (BIT) OF CHARACTER;
CONSTANT BIT tochar : BIT char := ('0’, ‘17);
BEGIN

END PROCEDURE dump mem;

IS

Overloaded Memoty Dump Procedure

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AY

Subprogram Overloading

BEGIN
FILE OPEN (BIT data, datafile, WRITE MODE) ;
FOR i1 IN memory’ RANGE (1) LOOP
FOR j IN memory’ REVERSE RANGE (2) LOOP

BIT value := memory (i, j);
WRITE (BIT data, BIT tochar (BIT value)) ;
END LOOP;
WRITE (BIT data, cr);
END LOOP;

END PROCEDURE dump mem;

= Opverloaded Memory Dump Procedutre (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Other Types and Type-Related Issues

Other Types and
Type-Related Issues

Subtypes Recotd Types
Alias Declaration Access Types
Global Objects Type Conversions
Standard

Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

A¢

Subtypes

Other Types and
Type-Related Issues

Alias Declaration Access Types

Global Objects Type Conversions

Standard
Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Subtypes

SUBTYPE bcd numbers IS INTEGER RANGE 0 TO 9;

SUBTYPE v31l IS v4l RANGE ‘0’ TO ‘Z’;

SUBTYPE v21 IS v4l RANGE ‘0’ TO ‘1’ ;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AT

March 2019

Record Types

Other Types and
Type-Related Issues

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

Standard
Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi INY

March 2019

Record Types

TYPE opcode IS (sta, lda, add, sub, and, nop,
TYPE mode IS RANGE 0 TO 3;
TYPE address IS BIT VECTOR (10 DOWNTO O0) ;

jmp,jsr) %

= Record Type, (a) Three Instruction Fields

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AA

March 2019

Record Types

TYPE instruction format IS RECORD
opc : opcode;
mde : mode;
adr : address;

END RECORD;

Record Type, (b) Declaration of Instruction Format

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A4

Record Types

SIGNAL instr : instruction format := (nop, O,
"00000000000™) ;

= Record Type, (c) A Signal of Recotd Type

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Record Types

instr.opc <= lda;
instr . .mde <= 2;
instr.adr = "00011110000";

= Record Type, (d) Referencing Fields of a Record Type Signal

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Record Types

instr <= (adr => (OTHERS => ‘l1l’), mde => 2,
opc => sub)

Record Type, (¢) Record Agoregate

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y

Alias Declaration

Other Types and
Type-Related Issues

Subtypes Record Types
Global Objects Type Conversions
Standard

Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

y

Alias Declaration

ALTIAS page

BIT VECTOR (2 DOWNTO 0) IS instr.adr (10 DOWNTO 8) ;
ALIAS offset

BIT VECTOR (7 DOWNTO 0) IS instr.adr (7 DOWNTO O0) ;

page <= "001";
offset <= X"F1";

= Alias Declaration, (a) Page and Offset Addresses,
(b) Alias Declaration for the Page and Offset Parts of the Address,

(c) Assignments to Page and Offset Parts of Address

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

q¢

Access Types

Other Types and
Type-Related Issues

Subtypes Recotd Types
Alias Declaration Access Types
Global Objects Type Conversions
Standard

Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Access Types

Access

Types

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

a1

March 2019

Linked-List Definition

Access

Types

Linked-List

Definition

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

v

Linked-List Definition

Z oE DR oo

TYPE node;
TYPE pointer IS ACCESS node;
TYPE node IS RECORD
data : INTEGER;
link : pointer;
END RECORD;

= Linked List Graphical Reptesentation and Definition in VHDL

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Using A Linked-List

Access

Types

ISinked=ISiSt Using

IDetinition A Linked-List

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

19

Using A Linked-List

PROCEDURE insert
(VARIABLE head : INOUT pointer; din : INTEGER)

IS
VARIABLE t1 : pointer;

BEGIN
—— Insert a node with wvalue din

IF head=NULL THEN
head := NEW node;
head.data := din;
head.link := NULL;
REPORT "The List was originally empty!";

ELSE

= Creating a linked list and entering data

VHDL: Modular Design and Synthesis of Cores and

March 2019 Systems Copyright Z. Navabi

Using A Linked-List

tl := head;
WHILE tl1.1link /= NULL LOOP
tl := tl.1link;
END LOOP;
tl.1link := NEW node;
tl := tl.1link;
tl.data := din;
tl.1link := NULL;
END IF;
REPORT "Value:'"&INTEGER’ IMAGE (din) &" inserted!";
END insert;

= Creating a linked list and entering data (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Using A Linked-List

PROCEDURE remove
(VARIABLE head : INOUT pointer; v : IN INTEGER)

IS

VARIABLE tl, t2 : pointer;
BEGIN

tl := head;

t2 := head;

IF head /= NULL THEN
IF head.data = v THEN
head := head.link;
REPORT '"Value:"&INTEGER’ IMAGE (v) &
" was in the head and removed!";

= Removing an Item From a Linked List

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Using A Linked-List

ELSE
WHILE t1 /= NULL LOOP
IF tl.data = v THEN
t2.1link := tl.1link;
REPORT '"Value:"&INTEGER’ IMAGE (v) &
" removed!" ;
EXIT;
ELSE
t2 = t1;
END IF;
tl := tl.1link;
END LOOP;
END IF;

= Removing an Item From a Linked List (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

A\

Using A Linked-List

PROCEDURE clear (VARIABLE head : INOUT pointer) IS
VARIABLE t1l, t2 : pointer;

BEGIN
—— PFree all the linked list
tl := NEW node;
tl := head;

head := NULL;
WHILE tl1 /= NULL LOOP

t2 = t1;
tl := tl.1link;
DEALLOCATE (t2) ;
END LOOP;
REPORT "The List cleared successfully!";
END clear;

= Freeing a Linked List

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Global Objects

Other Types and
Type-Related Issues

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

Standard
Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Global Objects

= A signal declared in a package :
= Can be written to or read by all VHDL bodies that the package is visible to.

- Concurrent writing to a shared signal will be possible only if the signal is resolved.
A function for resolving multiple driving values is defined for resolved signals.

= A shared variable declared in a package is accessible to all bodies that use the
package.

- The scope of shared variables declared in an architecture is only within the body of
the architecture:

SHARED VARIABLE dangerous : INTEGER := 0;

= Shared variables are not protected against multiple simultaneous read and write

operations. However, signal semaphores for creating such a protection can be done
in VHDL.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yol

Type Conversions

Other Types and
Type-Related Issues

Subtypes Record Types
Alias Declaration Access Types

Standard
Nine-Value LLogic

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Type Conversions

Type

Conversions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Al

Qualifiers

Type

Conversions

Qualifiers

Pl
I

(ConVErsions

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Qualifiers

SAS8:

SA9:

SA9:

(s_byte(0), s byte(l), s byte(2), s byte(3)) <=
(s_byte(0), s byte(l), s byte(2), s byte(3)) <=

(s_byte(0), s byte(l), s byte(2), s byte(3)) <=

s byte (5 DOWNTO 2) ;

(OTHER => ‘X’) ;

v4l byte’ (OTHER => ‘X’);

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

AR

March 2019

Explicit Type Conversions

Type

Conversions

Type

Conversions

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Explicit Type Conversions

TYPE v41l byte IS ARRAY (7 DOWNTO 0) of v4l;
TYPE v41l octal IS ARRAY (7 DOWNTO 0) of wv4l;

SIGNAL sb : v4l byte;
SIGNAL so : v4l octal;

Fb <= so;]

sb <= v41l byte (so) ;
so <= v41l octal (sb);

March 2019

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

March 2019

Standard Nine-Value Logic

Other Types and
Type-Related Issues

Subtypes Record Types
Alias Declaration Access Types
Global Objects Type Conversions

Standard
Nine-Value Logic

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Y

Standard Nine-Value Logic

TYPE
X01 |, 0, v

X01Z | X, 0, P, 2
Uxol O, X, 0, @I
UX01Z |0, X%, ‘O, P, 2

std_logic Sub-types

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

Predefined Attributes

Predefined
Attributes

Array Attributes

Signal Attributes

Type Attributes

Entity Attributes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

Array Attributes

Predefined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Array Attributes

Attribute Description Example
‘LEFT Left bound s_4by8 ‘LEFT
‘RIGHT Right bound s_4by8 ‘RIGHT

s_4by8 ‘RIGHT (2)
‘HIGH Upper bound s_4by8 ‘HIGH(2)
‘LOW LLower bound s_4by8 ‘LOW(2)
‘RANGE Range s_4by8 ‘RANGE(2)

s_4by8 ‘RANGE(1)

‘REVERSE_RANGE Revetse range s_4by8 ‘REVERSE_RANGE(2)

‘LENGTH Length
‘ASCENDING TRUE
If Ascending

s_4by8 ‘REVERSE_RANGE(1)
s_4by8 ‘LENGTH

S_4by8 ‘ASCENDING(2)
s_4by8 ‘ASCENDING(1)

= Predefined Array Attributes

VHDL: Modular Design and Synthesis of Cores and

March 2019

Systems Copyright Z. Navabi

Result

N NS W

0

0°TO 7
3 DOWNTO 0

7 DOWNTO 0
0°TO 3

4

TRUE
FALSE

March 2019

Type Attributes

Predefined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Atttibutes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi YA

Attribute

‘BASE
‘LEFT

‘RIGHT

‘HIGH

‘LOW

POS(V)

‘VAL(P)

Type Attributes

Description

Base of type

Left bound of type
or subtype

Right bound of type

or subtype

Uppet bound of type

or subtype

Lower bound of type

or subtype

Position of value V
in base of type.

Value at Position P
in base of type.

= Predefined Type Attributes

March 2019

Example

v3’BASE

v3PLEFT
vAPLEF T

v3PRIGHT
v4APRIGHT

INTEGER’HIGH
voPHIGH

POSITIVE’LOW
VAPLOW
vAPPOS(‘Z?)
V3PPOS(X?)
vAPVAL(3)
v3PVAL(3)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Result

v4l
‘0’
CX’
(Z’
(Z,
Large
‘Z,
|
‘X’
3

0
(Z’
‘Z’

March 2019

Type Attributes

Attribute Description Example

‘SUCC(V) Value, after value v3’SUCC(‘T)

V in base of type.
‘PRED(V) Value, before value v3PPRED(T)

V in base of type.
‘LEFTOFE (V) Value, left of value VIPLEFTOE(‘T)

V in base of type. VIPLEFTOE(X)
‘RIGHTOE(V) | Value, right of value v3PRIGHTOEF (‘1)

V in base of type. v3PRIGHTOEFE(°X?)
‘ASCENDING | TRUE if range is ascending v4PASCENDING
‘IMAGE (V) Converts value vAPIMAGE(‘Z2?)

V of type to string. opcode’IMAGE (1da)
‘VALUE(S) Converts string opcode’VALUE (“nop”)

S to value of type.
Predefined Type Attributes (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Result
‘Z’

‘O’

‘O’
Error
‘Z’

‘O’
TRUE

“Z”
“lda”

nop

Y.

Signal Attributes

Predefined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi AR

Signal Attributes

Attribute T/E Example Kind Type

Attribute description for the specified example

‘DELAYED - |sPDELAYED (5NS) |SIGNAL

A copy of s1, but delayed by 5 NS. If no parameter or 0, delayed by delta.
Equivalent to TRANSPORT delay of sZ.

‘STABLE EV s’STABLE (5 NS) SIGNAL | BOOLEAN

A signal that is TRUE if s7/has not changed in the last 5 NS. If no parameter or 0,
the resulting signal is TRUE if s/has not changed in the current simulation
time.

= Predefined Signal Attributes. Signal s7is of Type BIT

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYY

Signal Attributes

Attribute T/E Example Kind Type

Attribute description for the specified example

‘EVENT sPEVENT VALUE | BOOLEAN

In a simulation cycle, if s1 changes, this attribute becomes TRUE.

‘LAST EVENT EV sPLLAST EVENT VALUE TIME

The amount of time since the last value change on sl. If sPEVENT is TRUE, the
value of sI’LAST VALUE is 0.

LAST VALUE s’LAST VALUE VALUE

The value of sl before the most recent event occurred on this signal.

= Predefined Signal Attributes. Signal s7is of Type BIT (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYY

Signal Attributes

Attribute T/E Example Kind Type
Attribute description for the specified example

‘QUIET TR sPQUIET (5 NS) SIGNAL | BOOLEAN

A signal that is TRUE if no transaction has been placed on s/in the last 5 NS. If no
patameter or 0, the curtent simulation cycle is assumed.

‘ACTIVE s’ACTIVE VALUE | BOOLEAN

If s7has had a transaction in the current simulation cycle, sPACTIVE will be TRUE
for this simulation cycle, for delta time.

‘LAST ACTIVE TR sPLAST ACTIVE VALUE TIME

The amount of time since the last transaction occurred on si. If sPACTIVE is
TRUE, sPILAST_ACTIVE is 0.

= Predefined Signal Attributes. Signal s7is of Type BIT (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi VY ¢

Signal Attributes

Attribute T/E Example Kind Type

Attribute description for the specified example

‘TRANSACTION s’TRANSACTION SIGNAL

A signal that toggles each time a transaction occurs on s1. Initial value of this
attribute is not defined.

‘DRIVING - sPDRIVING VALUE BOOLEAN

If sihis being driven in a process, sSPDRIVING is TRUE in the same process.

‘DRIVING VALUE - s’DRIVING VALUE | VALUE

The driving value of s7from within the process this attribute is being applied.

= Predefined Signal Attributes. Signal s7is of Type BIT (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYo

Signal Attributes
| | |
TIME(NnS) 1| 415 q

sS1'DELAYED(5ns)

o B

s1'STABLE

Ss1'EVENT |_|I:_|

S1'LAST_EVENT I

s1'LAST_VALUE

Ss1'QUIET (5ns)

s1'ACTIVE T |
L

T

s1'LAST_ACTIVE I

S [_{]_
B
L=

[}
= Results of Signal Attributes when Apy l"lerl 0) ‘:_'n':: BIT _f'\ ne

/‘!

Signal Attributes

ENTITY brief d flip flop IS
PORT (d, ¢ : IN BIT; g : OUT BIT)

END brief d flip flop;

ARCHITECTURE falling edge OF brief d flip flop IS
SIGNAL tmp : BIT;

BEGIN
g <= d WHEN (c = ‘0’ AND c’EVENT) ;

END falling edge;

= A Simple Falling Edge Flip-Flop Using Signal Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYYV

Signal Attributes

FF: BLOCK (¢ = ‘0’ AND NOT c’STABLE) BEGIN
gf <= GUARDED din;

END BLOCK FF;

LT: BLOCK (c = ‘0’ AND c’EVENT) BEGIN
gl <= GUARDED din;

END BLOCK LT;

= A Simple Falling Edge Flip-Flop Using Signal Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYA

Signal Attributes

ENTITY brief t flip flop IS
PORT (t : IN BIT; g : OUT BIT) ;
END brief t flip flop;
ARCHITECTURE toggle OF brief t flip flop IS
SIGNAL tmp : BIT;
BEGIN
tmp <= NOT tmp WHEN ((t = ‘0’ AND t’EVENT) AND
(£’ DELAYED’ STABLE (20 NS))
) ELSE tmp;
g <= tmp AFTER 8 NS;
END toggle;

= A Simple Toggle Flip-Flop Using Signal Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YY4

March 2019

Entity Attributes

Predefined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi Y¥

Entity Attributes

ENTITY multiplexer n tester IS END ENTITY;
ARCHITECTURE timed OF multiplexer n tester IS

SIGNAL a : BIT VECTOR (7 DOWNTO O0) ;

SIGNAL s : BIT VECTOR (2 DOWNTO O0) ;

SIGNAL wl : BIT;

FOR UUT1l: mux n

USE ENTITY
components.multiplexer (customizable) ;

BEGIN
UUT1: mux n PORT MAP (a, s, wl);
onehot data (a, 123 NS, 9);
consecutive data (s, 79 NS, 11);
END ARCHITECTURE timed;

= Applying Entity Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi AR

Entity Attributes

ENTITY multiplexer IS

PORT (ins: IN BIT VECTOR; s: IN BIT VECTOR;
w: OUT BIT) ;

END ENTITY multiplexer;

ARCHITECTURE customizable OF multiplexer IS BEGIN
ASSERT FALSE
REPORT customizable’” SIMPLE NAME SEVERITY NOTE;
ASSERT FALSE
REPORT customizable’” PATH NAME SEVERITY NOTE;
ASSERT FALSE
REPORT customizable’ INSTANCE NAME SEVERITY NOTE;
w <= mux(ins, s)

END ARCHITECTURE customizable;

= Applying Entity Attributes (Continued)

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYY

Entity Attributes

——# ** Note: customizable

——# ** Note: :multiplexer n tester:uutl:

——-# ** Note: :multiplexer n tester (timed)
uutl@multiplexer (customizable) :

= Entity Attribute Examples

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YYY

March 2019

User-Defined Attributes

Predefined
Attributes

Array Attributes

Signal Attributes

Type Attributes

Entity Attributes

User-Defined
Attributes

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

1Y€

User-Defined Attributes

PACKAGE utility attributes IS
TYPE timing IS RECORD
rise, fall : TIME;
END RECORD ;
ATTRIBUTE delay : timing;
ATTRIBUTE sub dir : STRING;
END utility attributes;

= Attribute Definitions

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi yyeo

User-Defined Attributes

USE WORK.utility attributes.ALL;
ENTITY multiplexer IS
PORT (ins: IN BIT VECTOR; s: IN BIT VECTOR;
w: OUT BIT) ;
ATTRIBUTE sub dir OF multiplexer
ENTITY IS "/user/vhdl";
ATTRIBUTE delay OF w : SIGNAL IS (8 NS, 10 NS) ;
END ENTITY multiplexer;
ARCHITECTURE customizable OF multiplexer IS BEGIN
w <= ‘1’ AFTER w’delay.rise
WHEN mux (ins, s) = ‘1’
ELSE ‘0’ AFTER w’delay.fall;
END ARCHITECTURE customizable;

= Using Attributes

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi AR

March 2019

Standard Libraries and Packages

Standard
Libraries
and Packages

STANDARD TEXTIO
Package

Package and ASCII I/O

Std_logic_1164 Std_logic_arith
Package Package

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

STANDARD Package

Standard
Libraries
and Packages

STANDARD TEXTIO
Package

Package and ASCII I/0O

Std_logic_1164 Std_logic_arith
Package Package

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi VYA

STANDARD Package

= The STANDARD package is in the STD library.

= An internal language package
= Does not exist as a VHDL code.

= Basic types such as BIT, BIT VECTOR, INTEGER are included

= VHDL logical, relational, and arithmetic operations are over loaded for basic types of
this package.

= Arithmetic operations are defined for INTEGER and REAL types
= Does not overload these operations for the BIT and BOOLEAN types

= Users can develop their own binary arithmetic functions.

= The standard numeric package (IEEE 1076.3) is the NUMERIC_BIT package that
contains overloading of arithmetic operations for the BIT and BI'T VECTOR types.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi AR

March 2019

TEXTIO Package and ASCII I/O

Standard
Libraries
and Packages

STANDARD Rt

Package

Package
and ASCII I/0O

Std_logic_1164 Std_logic_arith
Package Package

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Ve

March 2019

TEXTIO Package and ASCII I/0

FILE f: TEXT;
FILE £: TEXT IS “input.txt”;
FILE f: TEXT OPEN READ MODE IS “input.txt”;

FILE OPEN (f, “input.txt”, READ MODE) ;
FILE OPEN (f, “output.txt”, WRITE MODE) ;
FILE OPEN (f, “output.txt”, APPEND MODE) ;

FILE CLOSE (f);

VARIABLE 1: LINE;

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

March 2019

TEXTIO Package and ASCII I/0

READLINE (£,

READ (1, wv,

WRITE (1, v,

WRIELINE (£,

ENDFILE (£)

1) ~—-

) =

) ==

1) ~--

reads a line of file f and places
it in buffer 1 of type LINE

reads a value v of its type form 1

writes the value v to LINE 1

writes 1 to file f. Function

returns TRUE if the end of file £
is reached

VHDL:

Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

March 2019

TEXTIO Package and ASCII I/O

TEXTIO
Package
and ASCII I/0

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

VEY

March 2019

TEXTIO Reading

TEXTIO
Package
and ASCII I/0

TEXTIO

Reading

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

TEXTIO Reading

PROCEDURE GetData
(SIGNAL s : OUT BIT;VECTOR; FILE £ : TEXT)
IS
VARIABLE lbuf : LINE;
VARIABLE t : TIME;
VARIABLE d : BIT VECTOR (s’ RANGE) ;
BEGIN
WHILE NOT ENDFILE (£f) LOOP
READLINE (£, lbuf) ;
READ (lbuf, t) ;
READ (lbuf, d) ;
s <= TRANSPORT d AFTER ¢t;
END LOOP;
FILE CLOSE (f);
END PROCEDURE GetData;

= Reading a TEXTIO File

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

TEXTIO Reading

0O ns 00111000
10 ns 00101111
35 ns 10110000
45 ns 11101010
50 ns 01100001
55 ns 00101110
95 ns 11100011
110 ns 00011100

= Sample Data File

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

TEXTIO Writing

TEXTIO
Package
and ASCIT'1I/0

TEXTIO

Writing

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

TEXTIO Writing

USE STD.TEXTIO.ALL:;

ENTITY multiplexer8 tester IS END ENTITY;

ARCHITECTURE timed OF multiplexer8 tester IS
SIGNAL a, b, wl : BIT VECTOR (7 DOWNTO O) ;
SIGNAL s : BIT := ‘0’;

BEGIN
UUT1: ENTITY WORK.multiplexer8 (conditional)
PORT MAP (a, b, s, wl);

END ARCHITECTURE timed;

FILE Ain : TEXT OPEN READ MODE IS "Ain.dat";
FILE Bin : TEXT OPEN READ MODE IS "Bin.dat";

= Using Text Data for Input and Output

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

March 2019

TEXTIO Writing

PROCESS (wl)

FILE Wout : TEXT OPEN WRITE MODE IS"Wout.dat";

VARIABLE lbuf : LINE;

BEGIN
WRITE (lbuf, NOW, RIGHT, 8, NS) ;
WRITE (lbuf, wl, RIGHT, 9) ;
WRITELINE (Wout, lbuf) ;

END PROCESS ;

GetData (a, Ain) ;

GetData (b, Bin) ;

s <= NOT s AFTER 25 NS WHEN NOW <= 140 NS

ELSE ‘0’ ;
END ARCHITECTURE timed;

Using Text Data for Input and Output (Continued)

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Std_logic TEXTIO

TEXTIO
Package
and ASCIT'I/0O

Std_logig
TEXTIO

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Std_logic TEXTIO

LIBRARY IEEE;

USE IEEE.std logic 1164 .ALL;
USE STD.TEXTIO.ALL:;

USE IEEE.std logic TEXTIO.ALL;

= std_logic TEXTIO Package

VHDL: Modular Design and Synthesis of Cores and

March 2019 Systems Copyright Z. Navabi Yoo

Std_logic_ 1164 Package

Standard
Libraries
and Packages

STANDARD TEXTIO
Package

Package and ASCII I/O

Std_logic_1164 Std_logic_arith
Package Package

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Std_logic_1164 Package

Std_logic_1164
Package

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yoy

Type Definition

Std_logic_1164
Package

Type
Definition

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Vot

Type Definition

TYPE std ulogic IS ('U',
'x',
'0',
'1',
'Z',
'W"
'L"
'H"

) ;

= Std_logic Enumeration Values

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yoo

Type Definition

SUBTYPE X01 IS resolved std ulogic

RANGE 'X' TO 'l'; -- ('X','0','1l")
SUBTYPE X01Z IS resolved std ulogic

RANGE 'X' TO vzv; — ('X','O','l','Z')
SUBTYPE UX01l IS resolved std ulogic

RANGE vUv TO '1',’ _ (vUv,vxv,vov,v]_V)
SUBTYPE UX01Z IS resolved std ulogic

RANGE 'Ul TO lZ'; —_—— ('U','x','O',lllllzl)

= Subtypes of the std_logic Type

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi you

Overloaded Logical Operators

Std_logic_1164
Package

Overloaded
Logical
Operators

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yov

Overloaded Logical Operators

= Opverloaded logic operators for
= “AND,,, “NAND”, C(OR”, “NOR,,, ‘(XOR”, “XNOR” and “NOT”

= Overloaded for stzd_ulogic, and because std_logicis consideted a subtype
of std_ulogic, they also wotk for the std_logic type.

= Also ovetloaded for std_logic_vectorand std_ulogic_vectorand

combinations of the two arrays.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YoA

Conversion Functions

Std_logic_1164
Package

Conversion
Functions

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yol

Conversion Functions

= Functions for conversions to and from BIT and std_Jlogic and its subsets.

- converts

= BIT VECTOR or std_ulogic_vector to std_logic vector.

g that converts

= BIT, std_logic, std_ulogic and their vectorized versions to X017 and
std_logic vector.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi

Y.

Edge Detection

Std_logic_1164
Package

Detection

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Y1)

Edge Detection

= Edge detection functions
= r1sing. edge

= falling: edge

= Recognized by most synthesis tools for flip-flop clock edge

detection.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yy

Std_logic_arith Package

Std_logic_1164
Package

Std_logic_arith
Package

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi ‘Y

Std_logic_arith Package

= The IEEE standard arithmetic package

= An important package that eases the use of the VHDL language for arithmetic and
logical functions

= The std_logic arith
= Defines SIGNED and UNSIGNED unconstrained arrays of std_logic.
= Opyverloads all arithmetic and relational operators of VHDL for
= SIGNED, INTEGER, and NATURAL types
« UNSIGNED, INTEGER, and NATURAL.

= With this ovetloading, we can use *“+” for adding a signed or an unsigned
std_Jlogic vector with an integet.

= We can mix a signed ot unsigned vector with an integer in relational operations,
i.e., ¢¢>”, ¢¢<”, ¢¢<:”’ ¢¢>:”, “=”, and “\,,.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi yu¢

March 2019

Std_logic_arith Package

Std_logic_arith
Package

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

Yo

March 2019

The UNSIGNED Package

Std_logic_arith
Package

The
UNSIGNED

Package

VHDL: Modular Design and Synthesis of Cores and
Systems Copyright Z. Navabi

AR

The UNSIGNED Package

= Once an object is declared as SIGNED or UNSIGNED, conversion to the
other type and conversion to std_logic becomes difficult.

= The std logic unsigned package sits on top of the std_logic arith package.

= Assumes all szd_logic vector declarations are unsigned and ovetloads all
arithmetic and relational operators for unsigned numbers declared as
std_logic vector.

= The unsigned package already includes the arithmetic package.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Yy

The UNSIGNED Package

—— Use This:

LIBRARY IEEE;

USE IEEE.std logic 1164 .ALL;

USE IEEE.std logic UNSIGNED.ALL;

—— OR The Following:

LTIBRARY IEEE;

USE IEEE.std logic 1164 .ALL;
USE IEEE.std logic SIGNED.ALL;

= Using Unsigned and Signed

VHDL: Modular Design and Synthesis of Cores and
YA

March 2019 Systems Copyright Z. Navabi

The SIGNED Package

Std_logic_arith
Package

The
SIGNED

Package

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi Y14

The SIGNED Package

Sits on top of the std_logic_arith package

Forces all logical and relational operatots to treat their operands as signed 2’s
complement numbers.

The type mark recognized in this package is std_logic vector that is treated as a
signed type.

If a design requites both signed and unsigned arithmetic, the std_logic_arith or
NUMERIC STD must be used.

SIGNED and UNSIGNED packages only allow sighed or unsigned arithmetic.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi A

Summary

= This chapter focused on
= Linguistics aspects of VHDL
= Types
= Opetratots
= Overloading

= Introduced standard libraries that define standard types and operators. Use of
libraries and standard packages simplifies the use of VHDL for design or
description of hardware based on standard technologies. A lot of times, use of
packages eliminates the need for undetstanding many of difficult language
constructs. However, for a better undetstanding of the languages and with a
look into future technologies, the issues discussed in the eatlier part of chapter
become important.

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YW

Acknowledgment

Slides developed by:
Homa Alemzadeh
[Last edited February 2019, by:
Saba Yousetzadeh

VHDL: Modular Design and Synthesis of Cores and
March 2019 Systems Copyright Z. Navabi YVYY

