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TYPE std_logic IS

(‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

TYPE v4l IS (‘X’,’0’,’1’,’Z’);

Enumeration Type for Multi-Value Logic
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 Input-Output Mapping of  an Inverter in v4l Logic Value System

Modeling a Four-value Inverter
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_inv IS

GENERIC (tplh, tphl : TIME := 0 NS);

PORT (w : OUT v4l; a : IN v4l);

END ENTITY vlog_inv;

--

ARCHITECTURE conditional OF vlog_inv IS

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE conditional;

 VHDL Description of  an Inverter in v4l Logic Value System 

Modeling a Four-value Inverter
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 Input-Output Mapping of  a NAND Gate in v4l Logic Value System 
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_nand2 IS

GENERIC (tplh, tphl : TIME := 0 NS);

PORT (w : OUT v4l; a, b : IN v4l);

END ENTITY vlog_nand2;

--

ARCHITECTURE conditional OF vlog_nand2 IS

BEGIN

w <= ‘1’ AFTER tplh WHEN (a=‘1’) NAND (b=‘1’) ELSE

‘0’ AFTER tphl WHEN (a=‘1’) AND (b=‘1’) ELSE

‘X’ AFTER tplh;

END ARCHITECTURE conditional; 

 VHDL Description of  a NAND Gate in v4l Logic Value System

Modeling a Four-value NAND Gate
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TYPE v4l IS (‘X’,’0’,’1’,’Z’);

Initial Values of Enumeration Types

The left-most

Element of  v41
Type

TYPE v4ll IS (‘Z’,’0’,’1’,’X’);

The left-most
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Type
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY cmos_not IS

GENERIC (c_load : REAL := 0.066E-12); --Farads

PORT (w : OUT v4l; a : IN v4l);

CONSTANT rpu : REAL := 3000.0; --Ohms

CONSTANT rpd : REAL := 2100.0; --Ohms

END ENTITY cmos_not;

. . . . . . . . . . . . . . .

 An Inverter Model with RC Timing Parameters 

Using Real Numbers
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. . . . . . . . . . . . . . . . 

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh : 

TIME := INTEGER (rpu * c_load *1.0E15) * 3 FS;

CONSTANT tphl : 

TIME := INTEGER (rpd * c_load *1.0E15) * 3 FS;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed;

 An Inverter Model with RC Timing Parameters (Continued)

Using Real Numbers
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. . . . . . . . . . . . . . . . 

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh : 

TIME := INTEGER (rpu * c_load *1.0E15) * 3 FS;

CONSTANT tphl : 

TIME := INTEGER (rpd * c_load *1.0E15) * 3 FS;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed;

 An Inverter Model with RC Timing Parameters (Continued)

Type Conversions
Explicit

Conversion
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TYPE capacitance IS RANGE 0 TO INTEGER’HIGH   

UNITS

ffr;  -- Femto Farads (base unit)

pfr = 1000 ffr;

nfr = 1000 pfr;

ufr = 1000 nfr;

mfr = 1000 ufr;

far = 1000 mfr;

END UNITS;

 Type Definition for Defining the Capacitance Physical Type 

Physical Types
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TYPE resistance IS RANGE 0 TO INTEGER’HIGH

UNITS

l_o;  -- Milli-Ohms (base unit)

ohms = 1000 l_o;

k_o = 1000 ohms;

m_o = 1000 k_o;

g_o = 1000 m_o;

END UNITS;

 Type Definition for Defining the Resistance Physical Type

Physical Types
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

USE utilities.BasicUtilities.ALL;

ENTITY cmos_not IS

GENERIC (c_load : capacitance := 66 ffr);

PORT (w : OUT v4l; a : IN v4l);

CONSTANT rpu : resistance := 3 k_o;

CONSTANT rpd : resistance := 2.1 k_o;

END ENTITY cmos_not;

. . . . . . . . . . . . . . 

 Using Resistance and Capacitance Physical Types 

Physical Types
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. . . . . . . . . . . . 

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh : TIME := 

(rpu / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;

CONSTANT tphl : TIME := 

(rpd / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed; 

 Using Resistance and Capacitance Physical Types (Continued)

Physical Types
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TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;

TYPE v4l_word IS ARRAY (15 DOWNTO 0) of v4l;

TYPE v4l_4by8 IS ARRAY (3 DOWNTO 0, 0 TO 7) of v4l;

TYPE v4l_1kbyte IS ARRAY (0 to 1023) OF v4l_byte;

TYPE v4l_8cube IS ARRAY (0 TO 7, 0 TO 7, 0 TO 7) of v4l; 

 Declaring Array Types 

Array Declarations
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ARCHITECTURE assign OF array_test IS

SIGNAL s : v4l;

SIGNAL s_byte : v4l_byte;

SIGNAL s_word : v4l_word;

SIGNAL s_4by8 : v4l_4by8;

SIGNAL s_1kbyte : v4l_1kbyte;

SIGNAL s_8cube : v4l_8cube;

BEGIN

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

END ARCHITECTURE assign; 

 Signal Assignments Based on Signal Declarations

Array Declarations
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BEGIN

SA1: s_byte <= v4l_byte ( s_word (11 DOWNTO 4) ); 

SA2: s <= s_4by8 (0, 7);

SA3: s_byte <= s_1kbyte (27);   

SA4: s <= s_1kbyte (23)(3);

SA5: s_byte <= s_byte (0) & s_byte (7 DOWNTO 1);

SA6: s_byte (7 DOWNTO 4) <= 

s_byte(2) & s_byte(3) & s_byte(4) & s_byte(5);

SA7: s_byte (7 DOWNTO 4) <=  

(s_byte(2), s_byte(3), s_byte(4), s_byte(5));

SA8:(s_byte(0), s_byte(1), s_byte(2), s_byte(3)) 

<= s_byte (5 DOWNTO 2);

END ARCHITECTURE assign; 

 Signal Assignments Based on Signal Declarations (Continued)

Array Declarations
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 Reversing Bits of  s_byte

Array Declarations

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

 SA7: s_byte (7 DOWNTO 4) <=  

          (s_byte(2), s_byte(3), s_byte(4), s_byte(5));
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SIGNAL s_4by8 : v4l_4by8 :=

(

( ‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’ ),

( ‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’ ),

( ‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’ ),

( ‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’ )

);

SIGNAL s_4by8 : v4l_4by8 := (OTHERS => “11000000”); 

SIGNAL s_4by8 : v4l_4by8 := (OTHERS => (OTHERS =>

‘Z’));

SIGNAL s_4by8 : v4l_4by8 :=(OTHERS => (0 TO 1 =>

‘1’, OTHERS =>‘0’));

 Initializing a Two Dimensional Array 

Initializing Multidimensional Arrays
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

USE utilities.BasicUtilities.ALL;

ARCHITECTURE tabular OF vlog_nand2 IS

CONSTANT v4l_nand2_table : v4l_2d := (

-- X   0   1   Z

(‘X’,’1’,’X’,’X’), -- X

(‘1’,’1’,’1’,’1’), -- 0

(‘X’,’1’,’0’,’X’), -- 1

(‘X’,’1’,’X’,’X’));-- Z

BEGIN

w <= v4l_nand2_table (a, b) AFTER (tplh +tphl)/2;

END ARCHITECTURE tabular; 

 Enumeration Type for Discrete Range of  a Two-Dimensional Array

Non Integer Indexing
TYPE v4l_2d IS ARRAY (v4l, v4l) OF v4l;
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PROCEDURE onehot_data

SIGNAL target : OUT v4l_vector; 

CONSTANT ti : TIME; CONSTANT n : INTEGER) 

IS

VARIABLE data : v4l_vector (target’RANGE);

VARIABLE i : INTEGER := 0;

BEGIN

data (0) := ‘1’;

WHILE i < n LOOP

data := data(data’RIGHT) & data(data’LEFT DOWNTO 1);

target <= TRANSPORT data AFTER ti * i;

i := i + 1;

END LOOP;

END PROCEDURE onehot_data; 

 A Generic Version of  the onehot_data Procedure 

Unconstrained Arrays
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LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_ram IS

PORT (address : IN v4l_vector; 

datain : IN v4l_vector; dataout : OUT v4l_vector;

cs, rwbar : IN v4l; opr : IN BOOLEAN);

END ENTITY vlog_ram;

--

. . . . . . . . . .  . . . .

. . . . . . . . . .  . . . .

 A Generic Memory Model

Unconstrained Arrays
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ARCHITECTURE behavioral OF vlog_ram IS

TYPE mem IS ARRAY 

(NATURAL RANGE <>, NATURAL RANGE <>) of v4l;

BEGIN

PROCESS 

CONSTANT memsize : INTEGER := 2**address’LENGTH; 

VARIABLE memory : mem (0 TO memsize-1,datain’RANGE);

BEGIN

id: IF opr’EVENT THEN

IF opr=TRUE THEN 

init_mem (memory, "memdata.dat");

ELSE 

dump_mem (memory, "memdump.dat"); 

END IF;

END IF;

 A Generic Memory Model (Continued)

Unconstrained Arrays
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. . . . . . . . . . . . .

wr: IF cs = ‘1’ THEN   

IF rwbar = ‘0’ THEN       -- Writing 

FOR i IN dataout’RANGE LOOP

memory (int(address), i) := datain (i);

END LOOP;

ELSE                      -- Reading

FOR i IN datain’RANGE LOOP

dataout (i) <= memory (int(address), i); 

END LOOP;  

END IF;

END IF;  

WAIT ON cs, rwbar, address, datain, opr;

END PROCESS;

END ARCHITECTURE behavioral;

 A Generic Memory Model (Continued)

Unconstrained Arrays
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FUNCTION int (invec : v4l_vector) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0; 

BEGIN

FOR i IN invec’LENGTH - 1 DOWNTO 0 LOOP

IF invec (i) = ‘1’ THEN 

tmp := tmp + 2**i; 

ELSIF invec (i) = ‘0’ THEN

tmp := tmp;

ELSE

tmp := 0;

END IF;

END LOOP;

RETURN tmp;

END FUNCTION int;

 Unconstrained Function int

Unconstrained Arrays
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ENTITY vlog_ram_tester IS END ENTITY vlog_ram_tester;

ARCHITECTURE timed OF vlog_ram_tester IS

SIGNAL ramin, ramout : v4l_vector (7 DOWNTO 0);   

SIGNAL addr : v4l_vector (5 DOWNTO 0);

SIGNAL cs, rwbar : v4l;

SIGNAL operate : BOOLEAN;

BEGIN

UU1: ENTITY WORK.vlog_ram (behavioral) 

PORT MAP (addr, ramin, ramout, cs, rwbar, operate);

operate <= TRUE AFTER 5 NS, FALSE AFTER 400 NS;

cs <= ‘0’, ‘1’ AFTER 15 NS, ‘0’ AFTER 337 NS;

rwbar <= ‘1’, ‘1’ AFTER 190 NS;

addr <= "101100" AFTER 020 NS, "101110" AFTER 040 NS 

ramin <= "11110001" AFTER 010 NS, . . . 

END ARCHITECTURE timed;

 Testbench Instantiating an Unconstrained Memory

Unconstrained Arrays
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TYPE logic_data IS FILE OF CHARACTER;

FILE input_logic_value_file1 : 

logic_data;

FILE input_logic_value_file2 : 

logic_data IS “input.dat”;

FILE input_logic_value_file3 :

logic_data OPEN READ_MODE IS “input.dat”;

FILE output_logic_value_file1 : 

logic_data;

FILE output_logic_value_file2 : 

logic_data OPEN WRITE_MODE IS “input.dat”;

Opening and Closing Files
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FILE_OPEN (input_logic_value_file1, 

“input.dat”, READ_MODE);

FILE_OPEN (output_logic_value_file1,

“output.dat”, WRITE_MODE);

FILE_OPEN_STATUS type may be included as the first 

parameter of the FILE_OPEN statement:

 OPEN_OK

 STATUS_ERROR

 NAME_ERROR

 MODE_ERROR

FILE_CLOSE (input_logic_value_file1);

FILE_CLOSE (output_logic_value_file1);

Opening and Closing Files
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TYPE v4lfiletype IS FILE OF CHARACTER;

PROCEDURE init_mem

(VARIABLE memory: OUT mem; 

CONSTANT datafile: STRING) 

IS

FILE v4ldata : v4lfiletype;

VARIABLE v4lvalue : v4l;

VARIABLE char : CHARACTER;

BEGIN

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

END PROCEDURE init_mem; 

 Reading an External File

File READ and WRITE Operations
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. . . . . . . . . . . . .

BEGIN

FILE_OPEN (v4ldata, datafile, READ_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

READ (v4ldata, char);

v4lvalue := chartov4l (char);

memory (i,j) := chartov4l (char);

END LOOP;

READ (v4ldata, char); 

READ (v4ldata, char); -- read cr lf

END LOOP;

END PROCEDURE init_mem; 

 Reading an External File  (Continued)

File READ and WRITE Operations
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PROCEDURE dump_mem 

(VARIABLE memory: IN mem; CONSTANT datafile: STRING) 

IS

FILE v4ldata : v4lfiletype;

VARIABLE v4lvalue : v4l; VARIABLE char : CHARACTER;

BEGIN

FILE_OPEN (v4ldata, datafile, WRITE_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

v4lvalue := memory (i, j); 

WRITE (v4ldata, v4ltochar (v4lvalue));

END LOOP;

WRITE (v4ldata, cr);

END LOOP;

END PROCEDURE dump_mem;

 Writing into an External File 

File READ and WRITE Operations
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Passing Files

Passing Files
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Logical Operators
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Logical Operators
 Logical Operators:

 AND, OR, NAND, NOR, XOR, XNOR, and NOT 

 Example :   x <= a XNOR b;

 Logical operators perform on predefined types BIT, BOOLEAN and 

BIT_VECTOR.

 Strings representing operator symbols can be used as function names for 
performing the same function as the operator they are representing:

 Example:  x <= “XOR” (a, b);

x_vector <= “AND” (a_vector, b_vector);
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Relational Operators
 Relational operators operate on operands of  the same type and return a 

BOOLEAN TRUE or FALSE value. 

 Operators in this group are

 =, /=, <, <=, >, and >= with equal, not equal, less than, less than or 
equal, greater than, and greater than or equal functionalities. 

 The = and /= operators operate on operands of  any type. The other 
relational operators perform their normal functions when used with 
scalar operands. 

 When array operands are used with these operators (<, <=, >, and >=), 
they perform ordering operations and return TRUE or FALSE based on 

values of  array elements starting from the left.
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Shift Operators
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 Shift Operators 

Shift Operators

Logical/ArithmeticLeft/RightShift/Rotate

LogicalLeftShiftSLL

ArithmeticLeftShiftSLA

LogicalRightShiftSRL

ArithmeticRightShiftSRA

LogicalLeftRotateROL

LogicalRightRotateROR
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 Application of  Shift Operators

Shift Operators

0 1 X Z 1 0 1 X

0 1 X Z 1 0 1 1

X Z 0 1 X Z 1 0

Z Z 0 1 X Z 1 0

0 1 X Z 1 0 1 Z

1 Z 0 1 X Z 1 0

av SLL 1

av SLA 1

av SRL 1

av SRA 1

av ROL 1

av ROR 1

Start with av= Z 0 1 X Z 1 0 1
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Adding Operators

 Addition, subtraction, and concatenation form the adding group of  operators. 

 Add and subtract are defined for numeric types of  INTEGER and REAL. 

 Both operands of  an adding operator must have the same type. 

 Add and subtract are not defined for BIT or BIT_VECTOR types, but VHDL 
packages for defining such operations are available.

 As with other operators, an adding operator can be used in the following two 
formats:
 a + b

 “+” (a, b)

 Operands of  a concatenation operator must be arrays or elements of  the same 
type. Concatenating two scalars of  the same type forms an array of  size 2.
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Sign Operators

 Sign operators + and – are unary operators that apply to numeric types.



March 2019 69

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Multiplying Operators
VHDL

Operators

Logical 

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign 

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Multiplying

Operators



March 2019 70

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Multiplying Operators

 The four multiplying operators are *, /, MOD, and REM. 

 Multiplication and division have their conventional mathematical meanings and 
are defined for operands of  the same type of  INTEGER or REAL. 

 Both operands of  MOD and REM operators must be of  the INTEGER type. 

 The remainder, REM, operator returns the remainder of  integer division of  the 
absolute value of  its left operand by the absolute value of  its right operand. The 
sign of  the result is the same as that of  the left operand.

 The modulus, MOD, operator calculates the modulus of  its left and right 
operands. The sign of  the result is the same as that of  the right operand.
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Other Operators
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Other Operators

 ** (exponential)

 ABS (absolute value)
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Aggregate Operation

 An aggregate operation combines one or more values into a complex array or record type. 

 Assuming a and b are objects of  BIT type:

 (a, b) , a & b are equivalent

 The first expression uses an aggregate operation to form a 2-bit vector, and the second 
expression concatenates a and b together. A

 Aggregate operation can only be applied to elements of  the same size and type. 

 Concatenation, on the other hand, can be used to concatenate different-size arrays of  the same 
element type.

 An aggregate operation applies to records as well as arrays. 

 An aggregate can be done on the left-hand side of  a signal assignment:

 (a, b) <= a2;

 (a, b) <= “10”;

 (a, b) <= (‘1’, ‘0’);
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 Verilog 4-Value Logic Operations Used for v4l

Operator Overloading

w = a × b

a:

b:

X 0 1 Z

X

0

1

Z

X

X

X

0 0

0

0

0

0 X X

X1

0

X X

a:

b:

X 0 1 Z

X

0

1

Z

X

1

X

X 0

X

X

1

X 1 X

11

1

1 X

(a) (b)

a:

X

X

0

1

Z

X

0

X

1

(c)
w = a + b w = a



March 2019 78

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

FUNCTION "AND" (a, b : v4l) RETURN v4l IS

CONSTANT v4l_and_table : v4l_2d := (

‘X’ =>   (‘X’,’0’,’X’,’X’),

‘0’ =>   (‘0’,’0’,’0’,’0’),

‘1’ =>   (‘X’,’0’,’1’,’X’),

‘Z’ =>   (‘X’,’0’,’X’,’X’));

BEGIN    

RETURN v4l_and_table (a, b);

END "AND";

 Overloading AND Logical Function for the v4l Four Value Logic System

Operator Overloading



March 2019 79

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY multiplexer IS 

PORT (a, b, s : IN v4l; w : OUT v4l);

END ENTITY;

--

ARCHITECTURE booloeanlevel OF multiplexer IS

BEGIN

w <= (a AND NOT s) OR (b AND s);

END ARCHITECTURE booloeanlevel;

 Using Overloaded Operators

Operator Overloading
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FUNCTION "*" (a : resistance; b : capacitance)

RETURN TIME IS

BEGIN

RETURN  ( ( a / 1 l_o) * ( b / 1 ffr ) * 1 FS ) /

1000;

END "*";

 Overloading: Multiplying Resistance and Capacitance Resulting TIME

Operator Overloading
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Subprogram Overloading

Subprogram

Overloading
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TYPE mem IS ARRAY (NATURAL RANGE <>, 

NATURAL RANGE <>) of BIT;

TYPE bit_filetype IS FILE OF CHARACTER;

PROCEDURE dump_mem (VARIABLE memory : IN mem;

CONSTANT datafile : STRING) IS

FILE BIT_data : BIT_filetype;

VARIABLE BIT_value : BIT;

TYPE BIT_char IS ARRAY (BIT) OF CHARACTER;

CONSTANT BIT_tochar : BIT_char := (‘0’, ‘1’);

BEGIN

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . 

END PROCEDURE dump_mem; 

 Overloaded Memory Dump Procedure 

Subprogram Overloading
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. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

BEGIN

FILE_OPEN (BIT_data, datafile, WRITE_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

BIT_value := memory (i, j); 

WRITE (BIT_data, BIT_tochar (BIT_value));

END LOOP;

WRITE (BIT_data, cr);

END LOOP;

END PROCEDURE dump_mem; 

 Overloaded Memory Dump Procedure  (Continued)

Subprogram Overloading
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Subtypes

Subtypes
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SUBTYPE bcd_numbers IS INTEGER RANGE 0 TO 9; 

SUBTYPE v3l IS v4l RANGE ‘0’ TO ‘Z’; 

SUBTYPE v2l IS v4l RANGE ‘0’ TO ‘1’;

Subtypes
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Record Types

Record Types
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TYPE opcode IS (sta, lda, add, sub, and, nop, jmp,jsr);

TYPE mode IS RANGE 0 TO 3;

TYPE address IS BIT_VECTOR (10 DOWNTO 0);

 Record Type,  (a) Three Instruction Fields

Record Types

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode address

Instruction format
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TYPE instruction_format IS RECORD

opc : opcode;

mde : mode;

adr : address;

END RECORD;

 Record Type, (b) Declaration of  Instruction Format

Record Types

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode address

Instruction format
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SIGNAL instr : instruction_format := (nop, 0,

"00000000000");

 Record Type, (c) A Signal of  Record Type

Record Types

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode address

Instruction format
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instr.opc  <= lda;

instr.mde <= 2;

instr.adr   <= "00011110000";

 Record Type, (d) Referencing Fields of  a Record Type Signal

Record Types

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode address

Instruction format
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instr <= (adr => (OTHERS => ‘1’), mde => 2, 

opc => sub)

 Record Type, (e) Record Aggregate

Record Types

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode address

Instruction format
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ALIAS page : 

BIT_VECTOR (2 DOWNTO 0) IS instr.adr (10 DOWNTO 8);

ALIAS offset : 

BIT_VECTOR (7 DOWNTO 0) IS instr.adr (7 DOWNTO 0);

 Alias Declaration,  (a) Page and Offset Addresses,

(b) Alias Declaration for the Page and Offset Parts of  the Address,

(c) Assignments to Page and Offset Parts of  Address

Alias Declaration

15   14   13   12   11   10   09   08   07   06   05   04   03   02   01   00

opcode mode page

address

offset

page <= "001";

offset <= X"F1";
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Linked-List Definition

Linked-List

Definition
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TYPE node;

TYPE pointer IS ACCESS node;

TYPE node IS RECORD

data : INTEGER;

link : pointer;

END RECORD;

 Linked List Graphical Representation and Definition in VHDL 

Linked-List Definition

nodepointer

link data

Integer type Pointer type

Buffer

link

node

data link

node

data Null
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Using A Linked-List

Using

A Linked-List
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PROCEDURE insert 

(VARIABLE head : INOUT pointer; din : INTEGER) 

IS

VARIABLE t1 : pointer; 

BEGIN

-- Insert a node with value din

IF head=NULL THEN 

head := NEW node;

head.data := din;

head.link := NULL;

REPORT "The List was originally empty!";

ELSE 

. . . . . . . . . . . . . . . . . . . . . . . . .

 Creating a linked list and entering data

Using A Linked-List
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. . . . . . . . . . . . . . . . . . . . . . . . .

t1 := head;

WHILE t1.link /= NULL LOOP

t1 := t1.link;

END LOOP;

t1.link := NEW node;

t1 := t1.link;

t1.data := din;

t1.link := NULL;

END IF;

REPORT "Value:"&INTEGER’IMAGE(din)&" inserted!";

END insert; 

 Creating a linked list and entering data (Continued)

Using A Linked-List
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PROCEDURE remove 

(VARIABLE head : INOUT pointer; v : IN INTEGER) 

IS

VARIABLE t1, t2 : pointer;

BEGIN

t1 := head;

t2 := head;

IF head /= NULL THEN

IF head.data = v THEN

head := head.link;

REPORT "Value:"&INTEGER’IMAGE(v)&

" was in the head and removed!";

. . . . . . . . . . . . . . . . . . . . . . . . .      

 Removing an Item From a Linked List

Using A Linked-List
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ELSE

WHILE t1 /= NULL LOOP

IF t1.data = v THEN

t2.link := t1.link;

REPORT "Value:"&INTEGER’IMAGE(v)&

" removed!";

EXIT;

ELSE

t2 := t1;

END IF;

t1 := t1.link;

END LOOP;

END IF;

 Removing an Item From a Linked List  (Continued)

Using A Linked-List
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PROCEDURE clear (VARIABLE head : INOUT pointer) IS

VARIABLE t1, t2 : pointer;

BEGIN

-- Free all the linked list

t1 := NEW node;

t1 := head;

head := NULL;

WHILE t1 /= NULL LOOP

t2 := t1;

t1 := t1.link;

DEALLOCATE (t2);

END LOOP; 

REPORT "The List cleared successfully!";

END clear;

 Freeing a Linked List

Using A Linked-List
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Global Objects
 A signal declared in a package :

 Can be written to or read by all VHDL bodies that the package is visible to. 

 Concurrent writing to a shared signal will be possible only if  the signal is resolved. 
A function for resolving multiple driving values is defined for resolved signals.

 A shared variable declared in a package is accessible to all bodies that use the 
package. 

 The scope of  shared variables declared in an architecture is only within the body of  
the architecture:

SHARED VARIABLE dangerous : INTEGER := 0;

 Shared variables are not protected against multiple simultaneous read and write 
operations. However, signal semaphores for creating such a protection can be done 
in VHDL.
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Qualifiers

Qualifiers
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SA8: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= s_byte (5 DOWNTO 2);

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= (OTHER => ‘X’);

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= v4l_byte’(OTHER => ‘X’); 

Qualifiers
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Explicit Type Conversions

Explicit
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TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;

TYPE v4l_octal IS ARRAY (7 DOWNTO 0) of v4l;

. . . . . .

SIGNAL sb : v4l_byte;

SIGNAL so : v4l_octal;

sb <= so;  -- NOT ALLOWED

sb <= v4l_byte (so);   -- Explicit Type Conversion

so <= v4l_octal (sb);

Explicit Type Conversions
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Standard Nine-Value Logic

Standard

Nine-Value Logic
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 std_logic Sub-types

Standard Nine-Value Logic

TYPE

‘1’‘0’,‘X’,X01

‘Z’‘1’,‘0’,‘X’,X01Z

‘1’‘0’,‘X’,‘U’,UX01

‘Z’‘1’,‘0’,‘X’,‘U’,UX01Z
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Predefined Attributes
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Array Attributes

Array Attributes
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 Predefined Array Attributes 

Array Attributes
ResultExampleDescriptionAttribute

3s_4by8 ‘LEFTLeft bound‘LEFT

0

7

s_4by8 ‘RIGHT

s_4by8 ‘RIGHT(2)

Right bound‘RIGHT

7s_4by8 ‘HIGH(2)Upper bound‘HIGH

0s_4by8 ‘LOW(2)Lower bound‘LOW

0 TO 7

3 DOWNTO 0

s_4by8 ‘RANGE(2)

s_4by8 ‘RANGE(1)

Range‘RANGE

7 DOWNTO 0

0 TO 3

s_4by8 ‘REVERSE_RANGE(2)

s_4by8 ‘REVERSE_RANGE(1)

Reverse range‘REVERSE_RANGE

4s_4by8 ‘LENGTHLength‘LENGTH

TRUE

FALSE

S_4by8 ‘ASCENDING(2)

s_4by8 ‘ASCENDING(1)

TRUE

If  Ascending

‘ASCENDING
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Type Attributes

Type Attributes
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 Predefined Type Attributes

Type Attributes
ResultExampleDescriptionAttribute

v4lv3l’BASEBase of  type‘BASE

‘0’

‘X’  

v3l’LEFT

v4l’LEFT

Left bound of  type

or subtype

‘LEFT

‘Z’

‘Z’  

v3l’RIGHT

v4l’RIGHT

Right bound of  type 

or subtype

‘RIGHT

Large

‘Z’

INTEGER’HIGH

v3l’HIGH

Upper bound of  type

or subtype

‘HIGH

1

‘X’    

POSITIVE’LOW

v4l’LOW

Lower bound of  type

or subtype

‘LOW

3

0       

v4l’POS(‘Z’)

v3l’POS(‘X’)

Position of  value V

in base of  type.

‘POS(V)

‘Z’ 

‘Z’

v4l’VAL(3) 

v3l’VAL(3)

Value at Position P

in base of  type.

‘VAL(P)
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 Predefined Type Attributes  (Continued)

Type Attributes
ResultExampleDescriptionAttribute

‘Z’  v3l’SUCC(‘1’)Value, after value

V in base of  type.

‘SUCC(V)

‘0’  v3l’PRED(‘1’)Value, before value

V in base of  type.

‘PRED(V)

‘0’ 

Error

v3l’LEFTOF(‘1’)

v3l’LEFTOF(‘X’)

Value, left of  value 

V in base of  type.

‘LEFTOF(V)

‘Z’  

‘0’

v3l’RIGHTOF(‘1’)

v3l’RIGHTOF(‘X’)

Value, right of  value

V in base of  type.

‘RIGHTOF(V)

TRUEv4l’ASCENDINGTRUE if  range is ascending‘ASCENDING

“Z”

“lda”

v4l’IMAGE(‘Z’)

opcode’IMAGE(lda)

Converts value 

V of  type to string.

‘IMAGE (V)

nopopcode’VALUE(“nop”)Converts string 

S to value of  type.

‘VALUE(S)
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Signal Attributes

Signal Attributes
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 Predefined Signal Attributes. Signal s1 is of  Type BIT 

Signal Attributes

TypeKindExampleT/EAttribute

Attribute description for the specified example

As s1SIGNALs1’DELAYED (5 NS)-‘DELAYED

A copy of  s1, but delayed by 5 NS.  If  no parameter or 0, delayed by delta.  

Equivalent to TRANSPORT delay of  s1.

BOOLEANSIGNALs1’STABLE (5 NS)EV‘STABLE

A signal that is TRUE if  s1 has not changed in the last 5 NS.  If  no parameter or 0, 

the resulting signal is TRUE if  s1 has not changed in the current simulation 

time.
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Signal Attributes

BOOLEANVALUEs1’EVENTEV‘EVENT

In a simulation cycle, if  s1 changes, this attribute becomes TRUE.

TIMEVALUEs1’LAST_EVENTEV‘LAST_EVENT

The amount of  time since the last value change on s1.  If  s1’EVENT is TRUE, the 

value of  s1’LAST_VALUE is 0.

As s1VALUEs1’LAST_VALUEEV‘LAST_VALUE

The value of  s1 before the most recent event occurred on this signal.

 Predefined Signal Attributes. Signal s1 is of  Type BIT (Continued) 

TypeKindExampleT/EAttribute

Attribute description for the specified example
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Signal Attributes

 Predefined Signal Attributes. Signal s1 is of  Type BIT (Continued) 

BOOLEANSIGNALs1’QUIET (5 NS)TR‘QUIET

A signal that is TRUE if  no transaction has been placed on s1 in the last 5 NS.  If  no 

parameter or 0, the current simulation cycle is assumed.

BOOLEANVALUEs1’ACTIVETR‘ACTIVE

If  s1 has had a transaction in the current simulation cycle, s1’ACTIVE will be TRUE 

for this simulation cycle, for delta time.

TIMEVALUEs1’LAST_ACTIVETR‘LAST_ACTIVE

The amount of  time since the last transaction occurred on s1.  If  s1’ACTIVE is 

TRUE, s1’LAST_ACTIVE is 0.

TypeKindExampleT/EAttribute

Attribute description for the specified example
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Signal Attributes

 Predefined Signal Attributes. Signal s1 is of  Type BIT (Continued) 

BITSIGNALs1’TRANSACTIONTR‘TRANSACTION

A signal that toggles each time a transaction occurs on s1.  Initial value of  this 

attribute is not defined.

BOOLEANVALUEs1’DRIVING-‘DRIVING

If  s1is being driven in a process, s1’DRIVING is TRUE in the same process.

As s1VALUEs1’DRIVING_VALUE-‘DRIVING_VALUE

The driving value of  s1 from within the process this attribute is being applied.

TypeKindExampleT/EAttribute

Attribute description for the specified example
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 Results of  Signal Attributes when Applied to the BIT Type Signal, s1

Signal Attributes
15 30 45 60

1510 20 25 5 10 0 155 10

010 5 10 0 5 10 0 05 10

T

0

T

F

T TT

FT

TIME(ns)

s1

s1'DELAYED(5ns)

s1'STABLE

s1'EVENT

s1'LAST_EVENT

s1'LAST_VALUE

s1'QUIET (5ns)

s1'ACTIVE

s1'LAST_ACTIVE

s1'TRANSACTION
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ENTITY brief_d_flip_flop IS

PORT (d, c : IN BIT; q : OUT BIT);

END brief_d_flip_flop;

--

ARCHITECTURE falling_edge OF brief_d_flip_flop IS

SIGNAL tmp : BIT;

BEGIN  

q <= d WHEN (c = ‘0’ AND c’EVENT);

END falling_edge;

 A Simple Falling Edge Flip-Flop Using Signal Attributes 

Signal Attributes
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FF: BLOCK (c = ‘0’ AND NOT c’STABLE) BEGIN

qf <= GUARDED din;

END BLOCK FF;

--

LT: BLOCK (c = ‘0’ AND c’EVENT) BEGIN

ql <= GUARDED din;

END BLOCK LT;

 A Simple Falling Edge Flip-Flop Using Signal Attributes 

Signal Attributes
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ENTITY brief_t_flip_flop IS

PORT (t : IN BIT; q : OUT BIT);

END brief_t_flip_flop;

--

ARCHITECTURE toggle OF brief_t_flip_flop IS

SIGNAL tmp : BIT;

BEGIN  

tmp <= NOT tmp WHEN ( (t = ‘0’ AND t’EVENT) AND

(t’DELAYED’STABLE(20 NS)) 

) ELSE tmp;

q <= tmp AFTER 8 NS;

END toggle; 

 A Simple Toggle Flip-Flop Using Signal Attributes

Signal Attributes



Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

March 2019 130

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

Entity Attributes

Entity Attributes
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ENTITY multiplexer_n_tester IS END ENTITY;

--

ARCHITECTURE timed OF multiplexer_n_tester IS

SIGNAL a : BIT_VECTOR(7 DOWNTO 0);

SIGNAL s : BIT_VECTOR(2 DOWNTO 0);

SIGNAL w1 : BIT;

FOR UUT1: mux_n 

USE ENTITY

components.multiplexer(customizable);

BEGIN

UUT1: mux_n PORT MAP (a, s, w1);

onehot_data (a, 123 NS, 9);   

consecutive_data (s, 79 NS, 11);   

END ARCHITECTURE timed;

 Applying Entity Attributes

Entity Attributes
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ENTITY multiplexer IS 

PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR; 

w: OUT BIT);

END ENTITY multiplexer;

--

ARCHITECTURE customizable OF multiplexer IS BEGIN

ASSERT FALSE 

REPORT customizable’SIMPLE_NAME SEVERITY NOTE; 

ASSERT FALSE 

REPORT customizable’PATH_NAME SEVERITY NOTE; 

ASSERT FALSE 

REPORT customizable’INSTANCE_NAME SEVERITY NOTE; 

w <= mux(ins, s);

END ARCHITECTURE customizable;

 Applying Entity Attributes (Continued)

Entity Attributes
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--# ** Note: customizable

--# ** Note: :multiplexer_n_tester:uut1:

--# ** Note: :multiplexer_n_tester(timed)

:uut1@multiplexer(customizable):

 Entity Attribute Examples

Entity Attributes
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User-Defined Attributes

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

User-Defined

Attributes
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PACKAGE utility_attributes IS

TYPE timing IS RECORD

rise, fall : TIME;

END RECORD;

ATTRIBUTE delay : timing;

ATTRIBUTE sub_dir : STRING;

END utility_attributes;

 Attribute Definitions 

User-Defined Attributes
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USE WORK.utility_attributes.ALL;

ENTITY multiplexer IS 

PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR; 

w: OUT BIT);

ATTRIBUTE sub_dir OF multiplexer : 

ENTITY IS "/user/vhdl";

ATTRIBUTE delay OF w : SIGNAL IS (8 NS, 10 NS);

END ENTITY multiplexer;

--

ARCHITECTURE customizable OF multiplexer IS BEGIN

w <= ‘1’ AFTER w’delay.rise 

WHEN mux(ins, s) = ‘1’ 

ELSE ‘0’ AFTER w’delay.fall; 

END ARCHITECTURE customizable;

 Using Attributes

User-Defined Attributes
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Standard Libraries and Packages

Standard

Libraries

and Packages

STANDARD
Package

TEXTIO
Package

and ASCII I/O

Std_logic_1164
Package

Std_logic_arith
Package
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STANDARD Package

STANDARD

Package
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STANDARD Package

 The STANDARD package is in the STD library. 

 An internal language package 

 Does not exist as a VHDL code. 

 Basic types such as BIT, BIT_VECTOR, INTEGER are included

 VHDL logical, relational, and arithmetic operations are over loaded for basic types of  
this package. 

 Arithmetic operations are defined for INTEGER and REAL types

 Does not overload these operations for the BIT and BOOLEAN types

 Users can develop their own binary arithmetic functions. 

 The standard numeric package (IEEE 1076.3) is the NUMERIC_BIT package that 
contains overloading of  arithmetic operations for the BIT and BIT_VECTOR types.
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TEXTIO Package and ASCII I/O
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FILE f: TEXT;

FILE f: TEXT IS “input.txt”;

FILE f: TEXT OPEN READ_MODE IS “input.txt”; 

FILE_OPEN (f, “input.txt”, READ_MODE);

FILE_OPEN (f, “output.txt”, WRITE_MODE);

FILE_OPEN (f, “output.txt”, APPEND_MODE); 

FILE_CLOSE (f);

TEXTIO Package and ASCII I/O

VARIABLE l: LINE;
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READLINE (f, l) -- reads a line of file f and places

it in buffer l of type LINE 

READ (l, v, …) -- reads a value v of its type form l

WRITE (l, v, …) -- writes the value v to LINE l

WRIELINE (f, l) -- writes l to file f. Function

ENDFILE (f) -- returns TRUE if the end of file f 

is reached 

TEXTIO Package and ASCII I/O
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TEXTIO Package and ASCII I/O

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO
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TEXTIO Reading

TEXTIO

Reading
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PROCEDURE GetData

(SIGNAL s : OUT BIT_VECTOR; FILE f : TEXT) 

IS

VARIABLE lbuf : LINE;

VARIABLE t : TIME;

VARIABLE d : BIT_VECTOR (s’RANGE);

BEGIN

WHILE NOT ENDFILE (f) LOOP

READLINE (f, lbuf);

READ (lbuf, t);

READ (lbuf, d);

s <= TRANSPORT d AFTER t;

END LOOP;

FILE_CLOSE (f);

END PROCEDURE GetData;

 Reading a TEXTIO File 

TEXTIO Reading
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0 ns 00111000

10 ns 00101111

35 ns 10110000

45 ns 11101010

50 ns 01100001

55 ns 00101110

95 ns 11100011

110 ns 00011100

 Sample Data File

TEXTIO Reading
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TEXTIO Writing

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO
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Std_logic
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Writing
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USE STD.TEXTIO.ALL;

ENTITY multiplexer8_tester IS END ENTITY;

--

ARCHITECTURE timed OF multiplexer8_tester IS

SIGNAL a, b, w1 : BIT_VECTOR (7 DOWNTO 0);

SIGNAL s : BIT := ‘0’; 

FILE Ain : TEXT OPEN READ_MODE IS "Ain.dat";

FILE Bin : TEXT OPEN READ_MODE IS "Bin.dat";

BEGIN   

UUT1: ENTITY WORK.multiplexer8 (conditional) 

PORT MAP (a, b, s, w1);

....................

....................

END ARCHITECTURE timed;

 Using Text Data for Input and Output

TEXTIO Writing
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....................

PROCESS (w1) 

FILE Wout : TEXT OPEN WRITE_MODE IS"Wout.dat";

VARIABLE lbuf : LINE;

BEGIN

WRITE (lbuf, NOW, RIGHT, 8, NS);

WRITE (lbuf, w1, RIGHT, 9);

WRITELINE (Wout, lbuf);

END PROCESS;

GetData (a, Ain);

GetData (b, Bin);

s <= NOT s AFTER 25 NS WHEN NOW <= 140 NS 

ELSE ‘0’;

END ARCHITECTURE timed;

 Using Text Data for Input and Output (Continued)

TEXTIO Writing
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Std_logic TEXTIO

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO

Std_logig

TEXTIO
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LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE STD.TEXTIO.ALL;

USE IEEE.std_logic_TEXTIO.ALL;

 std_logic TEXTIO Package 

Std_logic TEXTIO
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Std_logic_1164 Package

Std_logic_1164

Package
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Std_logic_1164 Package
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TYPE std_ulogic IS ( 'U',  -- Uninitialized

'X',  -- Forcing  Unknown

'0',  -- Forcing  0

'1',  -- Forcing  1

'Z',  -- High Impedance

'W',  -- Weak     Unknown

'L',  -- Weak     0

'H',  -- Weak     1

'-'   -- Don't care

);

 Std_logic Enumeration Values

Type Definition
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SUBTYPE X01 IS resolved std_ulogic 

RANGE 'X' TO '1'; -- ('X','0','1') 

SUBTYPE X01Z IS resolved std_ulogic 

RANGE 'X' TO 'Z'; -- ('X','0','1','Z') 

SUBTYPE UX01 IS resolved std_ulogic 

RANGE 'U' TO '1'; -- ('U','X','0','1') 

SUBTYPE UX01Z IS resolved std_ulogic 

RANGE 'U' TO 'Z'; -- ('U','X','0','1','Z')

 Subtypes of  the std_logic Type 

Type Definition
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Overloaded Logical Operators

Overloaded

Logical
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 Overloaded logic operators for 

 “AND”, “NAND”, “OR”, “NOR”, “XOR”, “XNOR” and “NOT” 

 Overloaded for std_ulogic, and because std_logic is considered a subtype 

of std_ulogic, they also work for the std_logic type. 

 Also overloaded for std_logic_vector and std_ulogic_vector and 

combinations of the two arrays.

Overloaded Logical Operators
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Conversion Functions

Conversion

Functions



March 2019 160

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 Functions for conversions to and from BIT and std_logic and its subsets. 

 To_StdLogicVector converts 

 BIT_VECTOR or std_ulogic_vector to std_logic_vector.

 TO_X01 that converts 

 BIT, std_logic, std_ulogic and their vectorized versions to X01 and 

std_logic_vector. 

Conversion Functions
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Edge Detection
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 Edge detection functions 

 rising_edge

 falling_edge

 Recognized by most synthesis tools for flip-flop clock edge 

detection.

Edge Detection
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Std_logic_arith Package

Std_logic_arith
Package



March 2019 164

VHDL: Modular Design and Synthesis of Cores and 

Systems Copyright Z. Navabi

 The IEEE standard arithmetic package

 An important package that eases the use of the VHDL language for arithmetic and 
logical functions

 The std_logic_arith
 Defines SIGNED and UNSIGNED unconstrained arrays of std_logic. 

 Overloads all arithmetic and relational operators of VHDL for

 SIGNED, INTEGER, and NATURAL types

 UNSIGNED, INTEGER, and NATURAL. 

 With this overloading, we can use “+” for adding a signed or an unsigned 
std_logic_vector with an integer.

 We can mix a signed or unsigned vector with an integer in relational operations, 
i.e., “>”, “<”, “<=”, “>=”, “=”, and “\”. 

Std_logic_arith Package
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Std_logic_arith Package
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The UNSIGNED Package

The
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 Once an object is declared as SIGNED or UNSIGNED, conversion to the 
other type and conversion to std_logic becomes difficult. 

 The std_logic_unsigned package sits on top of the std_logic_arith package.

 Assumes all std_logic_vector declarations are unsigned and overloads all 
arithmetic and relational operators for unsigned numbers declared as 
std_logic_vector. 

 The unsigned package already includes the arithmetic package. 

The UNSIGNED Package
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-- Use This:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_UNSIGNED.ALL;

-- OR The Following:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_SIGNED.ALL;

 Using Unsigned and Signed

The UNSIGNED Package
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The SIGNED Package

The

SIGNED
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 Sits on top of the std_logic_arith package

 Forces all logical and relational operators to treat their operands as signed 2’s 

complement numbers.

 The type mark recognized in this package is std_logic_vector that is treated as a 

signed type. 

 If a design requires both signed and unsigned arithmetic, the std_logic_arith or 

NUMERIC_STD must be used. 

 SIGNED and UNSIGNED packages only allow signed or unsigned arithmetic. 

The SIGNED Package
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 This chapter focused on 

 Linguistics aspects of VHDL 

 Types

 Operators

 Overloading

 Introduced standard libraries that define standard types and operators. Use of
libraries and standard packages simplifies the use of VHDL for design or
description of hardware based on standard technologies. A lot of times, use of
packages eliminates the need for understanding many of difficult language
constructs. However, for a better understanding of the languages and with a
look into future technologies, the issues discussed in the earlier part of chapter
become important.

Summary
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