
March 2019 1

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Chapter 6

VHDL Language

Utilities and Packages

March 2019 2

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

VHDL Language

Utilities and Packages
6.1 Type Declarations and Usage

6.1.1 Enumeration Type for Multi-Value Logic

6.1.2 Using Real Numbers

6.1.3 Type Conversions

6.1.4 Physical Types

6.1.5 Array Declarations

6.1.6 File Type and External File I/O

6.2 VHDL Operators

6.2.1 Logical Operators

6.2.2 Relational Operators

6.2.3 Shift Operators

6.2.4 Adding Operators

6.2.5 Sign Operators

6.2.6 Multiplying Operators

6.2.7 Other Operators

6.2.8 Aggregate Operation

March 2019 3

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

VHDL Language

Utilities and Packages
6.3 Operator and Subprogram Overloading

6.3.1 Operator Overloading

6.3.2 Subprogram Overloading

6.4 Other Types and Type-Related Issues

6.4.1 Subtypes

6.4.2 Record Types

6.4.3 Alias Declaration

6.4.4 Access Types

6.4.5 Global Objects

6.4.6 Type Conversions

6.4.7 Standard Nine-Value Logic

March 2019 4

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

VHDL Language

Utilities and Packages
6.5 Predefined Attributes

6.5.1 Array Attributes

6.5.2 Type Attributes

6.5.3 Signal Attributes

6.5.4 Entity Attributes

6.5.5 User-Defined Attributes

6.6 Standard Libraries and Packages

6.6.1 STANDARD Package

6.6.2 TEXTIO Package and ASCII I/O

6.6.3 Std_logic_1164 Package

6.6.4 Std_logic_arith Package

6.7 Summary

March 2019 5

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Declarations And Usage

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

March 2019 6

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Enumeration Type for Multi-Value Logic

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

Enumeration Type

for Multi-Value Logic

March 2019 7

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE std_logic IS

(‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

TYPE v4l IS (‘X’,’0’,’1’,’Z’);

Enumeration Type for Multi-Value Logic

March 2019 8

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Syntax Details of a Type Declaration

Enumeration Type for Multi-Value Logic

March 2019 9

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Enumeration Type

for Multi-Value Logic

Enumeration

Type for

Multi-Value

Logic

Modeling a

Four-value

Inverter

Modeling a

Four-value

NAND Gate

Initial Values of

Enumeration

Types

March 2019 10

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Modeling a Four-value Inverter

Enumeration

Type for

Multi-Value

Logic

Modeling a

Four-value

Inverter

Modeling a

Four-value

NAND Gate

Initial Values of

Enumeration

Types

Modeling a

Four-value

Inverter

March 2019 11

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Input-Output Mapping of an Inverter in v4l Logic Value System

Modeling a Four-value Inverter

Out:

In: a

X

0

1

Z

X

0

X

1

w = a

March 2019 12

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_inv IS

GENERIC (tplh, tphl : TIME := 0 NS);

PORT (w : OUT v4l; a : IN v4l);

END ENTITY vlog_inv;

--

ARCHITECTURE conditional OF vlog_inv IS

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE conditional;

 VHDL Description of an Inverter in v4l Logic Value System

Modeling a Four-value Inverter

Enumeration

Type for

Multi-Value

Logic

Modeling a

Four-value

Inverter

Modeling a

Four-value

NAND Gate

Initial Values of

Enumeration

Types

March 2019 13

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Modeling a Four-value NAND Gate

Modeling a

Four-value

NAND Gate

March 2019 14

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Input-Output Mapping of a NAND Gate in v4l Logic Value System

Out:

In1:

In2:

w = a × b

a

b

X 0 1 Z

X

0

1

Z

X

X

X

1 1

1

1

1

1 X X

X0

1

X X

Modeling a Four-value NAND Gate

March 2019 15

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_nand2 IS

GENERIC (tplh, tphl : TIME := 0 NS);

PORT (w : OUT v4l; a, b : IN v4l);

END ENTITY vlog_nand2;

--

ARCHITECTURE conditional OF vlog_nand2 IS

BEGIN

w <= ‘1’ AFTER tplh WHEN (a=‘1’) NAND (b=‘1’) ELSE

‘0’ AFTER tphl WHEN (a=‘1’) AND (b=‘1’) ELSE

‘X’ AFTER tplh;

END ARCHITECTURE conditional;

 VHDL Description of a NAND Gate in v4l Logic Value System

Modeling a Four-value NAND Gate

Enumeration

Type for

Multi-Value

Logic

Modeling a

Four-value

Inverter

Modeling a

Four-value

NAND Gate

Initial Values of

Enumeration

Types

March 2019 16

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Initial Values of Enumeration Types

Initial Values of

Enumeration

Types

March 2019 17

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE v4l IS (‘X’,’0’,’1’,’Z’);

Initial Values of Enumeration Types

The left-most

Element of v41
Type

TYPE v4ll IS (‘Z’,’0’,’1’,’X’);

The left-most

Element of v4l1
Type

March 2019 18

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Using Real Numbers

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

Using Real Numbers

March 2019 19

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY cmos_not IS

GENERIC (c_load : REAL := 0.066E-12); --Farads

PORT (w : OUT v4l; a : IN v4l);

CONSTANT rpu : REAL := 3000.0; --Ohms

CONSTANT rpd : REAL := 2100.0; --Ohms

END ENTITY cmos_not;

.

 An Inverter Model with RC Timing Parameters

Using Real Numbers

March 2019 20

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

.

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh :

TIME := INTEGER (rpu * c_load *1.0E15) * 3 FS;

CONSTANT tphl :

TIME := INTEGER (rpd * c_load *1.0E15) * 3 FS;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed;

 An Inverter Model with RC Timing Parameters (Continued)

Using Real Numbers

March 2019 21

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Conversions

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

Type Conversions

March 2019 22

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

.

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh :

TIME := INTEGER (rpu * c_load *1.0E15) * 3 FS;

CONSTANT tphl :

TIME := INTEGER (rpd * c_load *1.0E15) * 3 FS;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed;

 An Inverter Model with RC Timing Parameters (Continued)

Type Conversions
Explicit

Conversion

March 2019 23

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Physical Types

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

Physical Types

March 2019 24

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE capacitance IS RANGE 0 TO INTEGER’HIGH

UNITS

ffr; -- Femto Farads (base unit)

pfr = 1000 ffr;

nfr = 1000 pfr;

ufr = 1000 nfr;

mfr = 1000 ufr;

far = 1000 mfr;

END UNITS;

 Type Definition for Defining the Capacitance Physical Type

Physical Types

March 2019 25

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE resistance IS RANGE 0 TO INTEGER’HIGH

UNITS

l_o; -- Milli-Ohms (base unit)

ohms = 1000 l_o;

k_o = 1000 ohms;

m_o = 1000 k_o;

g_o = 1000 m_o;

END UNITS;

 Type Definition for Defining the Resistance Physical Type

Physical Types

March 2019 26

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

USE utilities.BasicUtilities.ALL;

ENTITY cmos_not IS

GENERIC (c_load : capacitance := 66 ffr);

PORT (w : OUT v4l; a : IN v4l);

CONSTANT rpu : resistance := 3 k_o;

CONSTANT rpd : resistance := 2.1 k_o;

END ENTITY cmos_not;

.

 Using Resistance and Capacitance Physical Types

Physical Types

March 2019 27

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

.

ARCHITECTURE rc_timed OF cmos_not IS

CONSTANT tplh : TIME :=

(rpu / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;

CONSTANT tphl : TIME :=

(rpd / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;

BEGIN

w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE

‘0’ AFTER tphl WHEN a = ‘1’ ELSE

‘X’ AFTER tplh;

END ARCHITECTURE rc_timed;

 Using Resistance and Capacitance Physical Types (Continued)

Physical Types

March 2019 28

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Array Declarations

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O
Array Declarations

March 2019 29

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;

TYPE v4l_word IS ARRAY (15 DOWNTO 0) of v4l;

TYPE v4l_4by8 IS ARRAY (3 DOWNTO 0, 0 TO 7) of v4l;

TYPE v4l_1kbyte IS ARRAY (0 to 1023) OF v4l_byte;

TYPE v4l_8cube IS ARRAY (0 TO 7, 0 TO 7, 0 TO 7) of v4l;

 Declaring Array Types

Array Declarations

March 2019 30

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Syntax Details of an Array Type Declaration

Array Declarations

March 2019 31

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ARCHITECTURE assign OF array_test IS

SIGNAL s : v4l;

SIGNAL s_byte : v4l_byte;

SIGNAL s_word : v4l_word;

SIGNAL s_4by8 : v4l_4by8;

SIGNAL s_1kbyte : v4l_1kbyte;

SIGNAL s_8cube : v4l_8cube;

BEGIN

.

.

.

END ARCHITECTURE assign;

 Signal Assignments Based on Signal Declarations

Array Declarations

March 2019 32

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

BEGIN

SA1: s_byte <= v4l_byte (s_word (11 DOWNTO 4));

SA2: s <= s_4by8 (0, 7);

SA3: s_byte <= s_1kbyte (27);

SA4: s <= s_1kbyte (23)(3);

SA5: s_byte <= s_byte (0) & s_byte (7 DOWNTO 1);

SA6: s_byte (7 DOWNTO 4) <=

s_byte(2) & s_byte(3) & s_byte(4) & s_byte(5);

SA7: s_byte (7 DOWNTO 4) <=

(s_byte(2), s_byte(3), s_byte(4), s_byte(5));

SA8:(s_byte(0), s_byte(1), s_byte(2), s_byte(3))

<= s_byte (5 DOWNTO 2);

END ARCHITECTURE assign;

 Signal Assignments Based on Signal Declarations (Continued)

Array Declarations

March 2019 33

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Reversing Bits of s_byte

Array Declarations

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

 SA7: s_byte (7 DOWNTO 4) <=

 (s_byte(2), s_byte(3), s_byte(4), s_byte(5));

March 2019 34

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Array Declarations

Array

Declarations

Initializing

Multidimensional

Arrays

Non Integer

Indexing

Unconstrained

Arrays

Array

Declarations

Initializing

Multidimensional

Arrays

Non Integer

Indexing

Unconstrained

Arrays

March 2019 35

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Initializing Multidimensional Arrays

Initializing

Multidimensional

Arrays

March 2019 36

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

SIGNAL s_4by8 : v4l_4by8 :=

(

(‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’),

(‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’),

(‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’),

(‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’)

);

SIGNAL s_4by8 : v4l_4by8 := (OTHERS => “11000000”);

SIGNAL s_4by8 : v4l_4by8 := (OTHERS => (OTHERS =>

‘Z’));

SIGNAL s_4by8 : v4l_4by8 :=(OTHERS => (0 TO 1 =>

‘1’, OTHERS =>‘0’));

 Initializing a Two Dimensional Array

Initializing Multidimensional Arrays

Array

Declarations

Initializing

Multidimensional

Arrays

Non Integer

Indexing

Unconstrained

Arrays

March 2019 37

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Non Integer Indexing

Non Integer

Indexing

March 2019 38

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

USE utilities.BasicUtilities.ALL;

ARCHITECTURE tabular OF vlog_nand2 IS

CONSTANT v4l_nand2_table : v4l_2d := (

-- X 0 1 Z

(‘X’,’1’,’X’,’X’), -- X

(‘1’,’1’,’1’,’1’), -- 0

(‘X’,’1’,’0’,’X’), -- 1

(‘X’,’1’,’X’,’X’));-- Z

BEGIN

w <= v4l_nand2_table (a, b) AFTER (tplh +tphl)/2;

END ARCHITECTURE tabular;

 Enumeration Type for Discrete Range of a Two-Dimensional Array

Non Integer Indexing
TYPE v4l_2d IS ARRAY (v4l, v4l) OF v4l;

Array

Declarations

Initializing

Multidimensional

Arrays

Non Integer

Indexing

Unconstrained

Arrays

March 2019 39

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Unconstrained Arrays

Unconstrained

Arrays

March 2019 40

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Syntax Details of an Unconstrained Array Declaration

Unconstrained Arrays

March 2019 41

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE onehot_data

SIGNAL target : OUT v4l_vector;

CONSTANT ti : TIME; CONSTANT n : INTEGER)

IS

VARIABLE data : v4l_vector (target’RANGE);

VARIABLE i : INTEGER := 0;

BEGIN

data (0) := ‘1’;

WHILE i < n LOOP

data := data(data’RIGHT) & data(data’LEFT DOWNTO 1);

target <= TRANSPORT data AFTER ti * i;

i := i + 1;

END LOOP;

END PROCEDURE onehot_data;

 A Generic Version of the onehot_data Procedure

Unconstrained Arrays

March 2019 42

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY vlog_ram IS

PORT (address : IN v4l_vector;

datain : IN v4l_vector; dataout : OUT v4l_vector;

cs, rwbar : IN v4l; opr : IN BOOLEAN);

END ENTITY vlog_ram;

--

.

.

 A Generic Memory Model

Unconstrained Arrays

March 2019 43

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ARCHITECTURE behavioral OF vlog_ram IS

TYPE mem IS ARRAY

(NATURAL RANGE <>, NATURAL RANGE <>) of v4l;

BEGIN

PROCESS

CONSTANT memsize : INTEGER := 2**address’LENGTH;

VARIABLE memory : mem (0 TO memsize-1,datain’RANGE);

BEGIN

id: IF opr’EVENT THEN

IF opr=TRUE THEN

init_mem (memory, "memdata.dat");

ELSE

dump_mem (memory, "memdump.dat");

END IF;

END IF;

 A Generic Memory Model (Continued)

Unconstrained Arrays

March 2019 44

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

.

wr: IF cs = ‘1’ THEN

IF rwbar = ‘0’ THEN -- Writing

FOR i IN dataout’RANGE LOOP

memory (int(address), i) := datain (i);

END LOOP;

ELSE -- Reading

FOR i IN datain’RANGE LOOP

dataout (i) <= memory (int(address), i);

END LOOP;

END IF;

END IF;

WAIT ON cs, rwbar, address, datain, opr;

END PROCESS;

END ARCHITECTURE behavioral;

 A Generic Memory Model (Continued)

Unconstrained Arrays

March 2019 45

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FUNCTION int (invec : v4l_vector) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0;

BEGIN

FOR i IN invec’LENGTH - 1 DOWNTO 0 LOOP

IF invec (i) = ‘1’ THEN

tmp := tmp + 2**i;

ELSIF invec (i) = ‘0’ THEN

tmp := tmp;

ELSE

tmp := 0;

END IF;

END LOOP;

RETURN tmp;

END FUNCTION int;

 Unconstrained Function int

Unconstrained Arrays

March 2019 46

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ENTITY vlog_ram_tester IS END ENTITY vlog_ram_tester;

ARCHITECTURE timed OF vlog_ram_tester IS

SIGNAL ramin, ramout : v4l_vector (7 DOWNTO 0);

SIGNAL addr : v4l_vector (5 DOWNTO 0);

SIGNAL cs, rwbar : v4l;

SIGNAL operate : BOOLEAN;

BEGIN

UU1: ENTITY WORK.vlog_ram (behavioral)

PORT MAP (addr, ramin, ramout, cs, rwbar, operate);

operate <= TRUE AFTER 5 NS, FALSE AFTER 400 NS;

cs <= ‘0’, ‘1’ AFTER 15 NS, ‘0’ AFTER 337 NS;

rwbar <= ‘1’, ‘1’ AFTER 190 NS;

addr <= "101100" AFTER 020 NS, "101110" AFTER 040 NS

ramin <= "11110001" AFTER 010 NS, . . .

END ARCHITECTURE timed;

 Testbench Instantiating an Unconstrained Memory

Unconstrained Arrays

Type Declarations

And Usage

Enumeration Type

for Multi-Value Logic
Using Real Numbers

Type Conversions Physical Types

Array Declarations
File Type and

External File I/O

March 2019 47

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

File Type and External File I/O

File Type and

External File I/O

March 2019 48

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

File Type and External File I/O

File Type and

External File I/O

Opening and

Closing Files

File READ

and WRITE

Operations

Passing Files

March 2019 49

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Opening and Closing Files

File Type and

External File I/O

Opening and

Closing Files

File READ

and WRITE

Operations

Passing Files
Opening and

Closing Files

March 2019 50

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE logic_data IS FILE OF CHARACTER;

FILE input_logic_value_file1 :

logic_data;

FILE input_logic_value_file2 :

logic_data IS “input.dat”;

FILE input_logic_value_file3 :

logic_data OPEN READ_MODE IS “input.dat”;

FILE output_logic_value_file1 :

logic_data;

FILE output_logic_value_file2 :

logic_data OPEN WRITE_MODE IS “input.dat”;

Opening and Closing Files

March 2019 51

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FILE_OPEN (input_logic_value_file1,

“input.dat”, READ_MODE);

FILE_OPEN (output_logic_value_file1,

“output.dat”, WRITE_MODE);

FILE_OPEN_STATUS type may be included as the first

parameter of the FILE_OPEN statement:

 OPEN_OK

 STATUS_ERROR

 NAME_ERROR

 MODE_ERROR

FILE_CLOSE (input_logic_value_file1);

FILE_CLOSE (output_logic_value_file1);

Opening and Closing Files

File Type and

External File I/O

Opening and

Closing Files

File READ

and WRITE

Operations

Passing Files

March 2019 52

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

File READ and WRITE Operations

File READ

and WRITE

Operations

March 2019 53

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE v4lfiletype IS FILE OF CHARACTER;

PROCEDURE init_mem

(VARIABLE memory: OUT mem;

CONSTANT datafile: STRING)

IS

FILE v4ldata : v4lfiletype;

VARIABLE v4lvalue : v4l;

VARIABLE char : CHARACTER;

BEGIN

.

.

END PROCEDURE init_mem;

 Reading an External File

File READ and WRITE Operations

March 2019 54

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

.

BEGIN

FILE_OPEN (v4ldata, datafile, READ_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

READ (v4ldata, char);

v4lvalue := chartov4l (char);

memory (i,j) := chartov4l (char);

END LOOP;

READ (v4ldata, char);

READ (v4ldata, char); -- read cr lf

END LOOP;

END PROCEDURE init_mem;

 Reading an External File (Continued)

File READ and WRITE Operations

March 2019 55

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE dump_mem

(VARIABLE memory: IN mem; CONSTANT datafile: STRING)

IS

FILE v4ldata : v4lfiletype;

VARIABLE v4lvalue : v4l; VARIABLE char : CHARACTER;

BEGIN

FILE_OPEN (v4ldata, datafile, WRITE_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

v4lvalue := memory (i, j);

WRITE (v4ldata, v4ltochar (v4lvalue));

END LOOP;

WRITE (v4ldata, cr);

END LOOP;

END PROCEDURE dump_mem;

 Writing into an External File

File READ and WRITE Operations

File Type and

External File I/O

Opening and

Closing Files

File READ

and WRITE

Operations

Passing Files

March 2019 56

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Passing Files

Passing Files

March 2019 57

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

VHDL Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

March 2019 58

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Logical Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Logical

Operators

March 2019 59

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Logical Operators
 Logical Operators:

 AND, OR, NAND, NOR, XOR, XNOR, and NOT

 Example : x <= a XNOR b;

 Logical operators perform on predefined types BIT, BOOLEAN and

BIT_VECTOR.

 Strings representing operator symbols can be used as function names for
performing the same function as the operator they are representing:

 Example: x <= “XOR” (a, b);

x_vector <= “AND” (a_vector, b_vector);

VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

March 2019 60

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Relational Operators

Relational

Operators

March 2019 61

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Relational Operators
 Relational operators operate on operands of the same type and return a

BOOLEAN TRUE or FALSE value.

 Operators in this group are

 =, /=, <, <=, >, and >= with equal, not equal, less than, less than or
equal, greater than, and greater than or equal functionalities.

 The = and /= operators operate on operands of any type. The other
relational operators perform their normal functions when used with
scalar operands.

 When array operands are used with these operators (<, <=, >, and >=),
they perform ordering operations and return TRUE or FALSE based on

values of array elements starting from the left.

March 2019 62

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Shift Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Shift

Operators

March 2019 63

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Shift Operators

Shift Operators

Logical/ArithmeticLeft/RightShift/Rotate

LogicalLeftShiftSLL

ArithmeticLeftShiftSLA

LogicalRightShiftSRL

ArithmeticRightShiftSRA

LogicalLeftRotateROL

LogicalRightRotateROR

March 2019 64

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Application of Shift Operators

Shift Operators

0 1 X Z 1 0 1 X

0 1 X Z 1 0 1 1

X Z 0 1 X Z 1 0

Z Z 0 1 X Z 1 0

0 1 X Z 1 0 1 Z

1 Z 0 1 X Z 1 0

av SLL 1

av SLA 1

av SRL 1

av SRA 1

av ROL 1

av ROR 1

Start with av= Z 0 1 X Z 1 0 1

March 2019 65

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Adding Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Adding

Operators

March 2019 66

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Adding Operators

 Addition, subtraction, and concatenation form the adding group of operators.

 Add and subtract are defined for numeric types of INTEGER and REAL.

 Both operands of an adding operator must have the same type.

 Add and subtract are not defined for BIT or BIT_VECTOR types, but VHDL
packages for defining such operations are available.

 As with other operators, an adding operator can be used in the following two
formats:
 a + b

 “+” (a, b)

 Operands of a concatenation operator must be arrays or elements of the same
type. Concatenating two scalars of the same type forms an array of size 2.

March 2019 67

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Sign Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Sign

Operators

March 2019 68

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Sign Operators

 Sign operators + and – are unary operators that apply to numeric types.

March 2019 69

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Multiplying Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Multiplying

Operators

March 2019 70

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Multiplying Operators

 The four multiplying operators are *, /, MOD, and REM.

 Multiplication and division have their conventional mathematical meanings and
are defined for operands of the same type of INTEGER or REAL.

 Both operands of MOD and REM operators must be of the INTEGER type.

 The remainder, REM, operator returns the remainder of integer division of the
absolute value of its left operand by the absolute value of its right operand. The
sign of the result is the same as that of the left operand.

 The modulus, MOD, operator calculates the modulus of its left and right
operands. The sign of the result is the same as that of the right operand.

March 2019 71

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Other Operators
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Other

Operators

March 2019 72

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Other Operators

 ** (exponential)

 ABS (absolute value)

March 2019 73

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Aggregate Operation
VHDL

Operators

Logical

Operators

Relational

Operators

Shift

Operators

Adding

Operators

Sign

Operators

Multiplying

Operators

Other

Operators

Aggregate

Operation

Aggregate

Operation

March 2019 74

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Aggregate Operation

 An aggregate operation combines one or more values into a complex array or record type.

 Assuming a and b are objects of BIT type:

 (a, b) , a & b are equivalent

 The first expression uses an aggregate operation to form a 2-bit vector, and the second
expression concatenates a and b together. A

 Aggregate operation can only be applied to elements of the same size and type.

 Concatenation, on the other hand, can be used to concatenate different-size arrays of the same
element type.

 An aggregate operation applies to records as well as arrays.

 An aggregate can be done on the left-hand side of a signal assignment:

 (a, b) <= a2;

 (a, b) <= “10”;

 (a, b) <= (‘1’, ‘0’);

March 2019 75

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Operator and Subprogram

Overloading

Operator and

Subprogram

Overloading

Operator

Overloading

Subprogram

Overloading

March 2019 76

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Operator Overloading

Operator and

Subprogram

Overloading

Operator

Overloading

Subprogram

Overloading

Operator

Overloading

March 2019 77

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Verilog 4-Value Logic Operations Used for v4l

Operator Overloading

w = a × b

a:

b:

X 0 1 Z

X

0

1

Z

X

X

X

0 0

0

0

0

0 X X

X1

0

X X

a:

b:

X 0 1 Z

X

0

1

Z

X

1

X

X 0

X

X

1

X 1 X

11

1

1 X

(a) (b)

a:

X

X

0

1

Z

X

0

X

1

(c)
w = a + b w = a

March 2019 78

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FUNCTION "AND" (a, b : v4l) RETURN v4l IS

CONSTANT v4l_and_table : v4l_2d := (

‘X’ => (‘X’,’0’,’X’,’X’),

‘0’ => (‘0’,’0’,’0’,’0’),

‘1’ => (‘X’,’0’,’1’,’X’),

‘Z’ => (‘X’,’0’,’X’,’X’));

BEGIN

RETURN v4l_and_table (a, b);

END "AND";

 Overloading AND Logical Function for the v4l Four Value Logic System

Operator Overloading

March 2019 79

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY utilities;

USE utilities.VerilogLogic.ALL;

ENTITY multiplexer IS

PORT (a, b, s : IN v4l; w : OUT v4l);

END ENTITY;

--

ARCHITECTURE booloeanlevel OF multiplexer IS

BEGIN

w <= (a AND NOT s) OR (b AND s);

END ARCHITECTURE booloeanlevel;

 Using Overloaded Operators

Operator Overloading

March 2019 80

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FUNCTION "*" (a : resistance; b : capacitance)

RETURN TIME IS

BEGIN

RETURN ((a / 1 l_o) * (b / 1 ffr) * 1 FS) /

1000;

END "*";

 Overloading: Multiplying Resistance and Capacitance Resulting TIME

Operator Overloading

Operator and

Subprogram

Overloading

Operator

Overloading

Subprogram

Overloading

March 2019 81

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Subprogram Overloading

Subprogram

Overloading

March 2019 82

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE mem IS ARRAY (NATURAL RANGE <>,

NATURAL RANGE <>) of BIT;

TYPE bit_filetype IS FILE OF CHARACTER;

PROCEDURE dump_mem (VARIABLE memory : IN mem;

CONSTANT datafile : STRING) IS

FILE BIT_data : BIT_filetype;

VARIABLE BIT_value : BIT;

TYPE BIT_char IS ARRAY (BIT) OF CHARACTER;

CONSTANT BIT_tochar : BIT_char := (‘0’, ‘1’);

BEGIN

. .

.

END PROCEDURE dump_mem;

 Overloaded Memory Dump Procedure

Subprogram Overloading

March 2019 83

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

. .

. .

BEGIN

FILE_OPEN (BIT_data, datafile, WRITE_MODE);

FOR i IN memory’RANGE(1) LOOP

FOR j IN memory’REVERSE_RANGE(2) LOOP

BIT_value := memory (i, j);

WRITE (BIT_data, BIT_tochar (BIT_value));

END LOOP;

WRITE (BIT_data, cr);

END LOOP;

END PROCEDURE dump_mem;

 Overloaded Memory Dump Procedure (Continued)

Subprogram Overloading

March 2019 84

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Other Types and Type-Related Issues
Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

March 2019 85

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Subtypes

Subtypes

March 2019 86

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

SUBTYPE bcd_numbers IS INTEGER RANGE 0 TO 9;

SUBTYPE v3l IS v4l RANGE ‘0’ TO ‘Z’;

SUBTYPE v2l IS v4l RANGE ‘0’ TO ‘1’;

Subtypes

Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

March 2019 87

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Record Types

Record Types

March 2019 88

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE opcode IS (sta, lda, add, sub, and, nop, jmp,jsr);

TYPE mode IS RANGE 0 TO 3;

TYPE address IS BIT_VECTOR (10 DOWNTO 0);

 Record Type, (a) Three Instruction Fields

Record Types

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode address

Instruction format

March 2019 89

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE instruction_format IS RECORD

opc : opcode;

mde : mode;

adr : address;

END RECORD;

 Record Type, (b) Declaration of Instruction Format

Record Types

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode address

Instruction format

March 2019 90

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

SIGNAL instr : instruction_format := (nop, 0,

"00000000000");

 Record Type, (c) A Signal of Record Type

Record Types

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode address

Instruction format

March 2019 91

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

instr.opc <= lda;

instr.mde <= 2;

instr.adr <= "00011110000";

 Record Type, (d) Referencing Fields of a Record Type Signal

Record Types

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode address

Instruction format

March 2019 92

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

instr <= (adr => (OTHERS => ‘1’), mde => 2,

opc => sub)

 Record Type, (e) Record Aggregate

Record Types

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode address

Instruction format

March 2019 93

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Alias Declaration
Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

Alias Declaration

March 2019 94

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ALIAS page :

BIT_VECTOR (2 DOWNTO 0) IS instr.adr (10 DOWNTO 8);

ALIAS offset :

BIT_VECTOR (7 DOWNTO 0) IS instr.adr (7 DOWNTO 0);

 Alias Declaration, (a) Page and Offset Addresses,

(b) Alias Declaration for the Page and Offset Parts of the Address,

(c) Assignments to Page and Offset Parts of Address

Alias Declaration

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

opcode mode page

address

offset

page <= "001";

offset <= X"F1";

March 2019 95

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Access Types
Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

Access Types

March 2019 96

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Access Types

Access

Types

Linked-List

Definition

Using

A Linked-List

Access

Types

Linked-List

Definition

Using

A Linked-List

March 2019 97

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Linked-List Definition

Linked-List

Definition

March 2019 98

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE node;

TYPE pointer IS ACCESS node;

TYPE node IS RECORD

data : INTEGER;

link : pointer;

END RECORD;

 Linked List Graphical Representation and Definition in VHDL

Linked-List Definition

nodepointer

link data

Integer type Pointer type

Buffer

link

node

data link

node

data Null

Access

Types

Linked-List

Definition

Using

A Linked-List

March 2019 99

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Using A Linked-List

Using

A Linked-List

March 2019 100

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE insert

(VARIABLE head : INOUT pointer; din : INTEGER)

IS

VARIABLE t1 : pointer;

BEGIN

-- Insert a node with value din

IF head=NULL THEN

head := NEW node;

head.data := din;

head.link := NULL;

REPORT "The List was originally empty!";

ELSE

. .

 Creating a linked list and entering data

Using A Linked-List

March 2019 101

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

. .

t1 := head;

WHILE t1.link /= NULL LOOP

t1 := t1.link;

END LOOP;

t1.link := NEW node;

t1 := t1.link;

t1.data := din;

t1.link := NULL;

END IF;

REPORT "Value:"&INTEGER’IMAGE(din)&" inserted!";

END insert;

 Creating a linked list and entering data (Continued)

Using A Linked-List

March 2019 102

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE remove

(VARIABLE head : INOUT pointer; v : IN INTEGER)

IS

VARIABLE t1, t2 : pointer;

BEGIN

t1 := head;

t2 := head;

IF head /= NULL THEN

IF head.data = v THEN

head := head.link;

REPORT "Value:"&INTEGER’IMAGE(v)&

" was in the head and removed!";

.

 Removing an Item From a Linked List

Using A Linked-List

March 2019 103

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ELSE

WHILE t1 /= NULL LOOP

IF t1.data = v THEN

t2.link := t1.link;

REPORT "Value:"&INTEGER’IMAGE(v)&

" removed!";

EXIT;

ELSE

t2 := t1;

END IF;

t1 := t1.link;

END LOOP;

END IF;

 Removing an Item From a Linked List (Continued)

Using A Linked-List

March 2019 104

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE clear (VARIABLE head : INOUT pointer) IS

VARIABLE t1, t2 : pointer;

BEGIN

-- Free all the linked list

t1 := NEW node;

t1 := head;

head := NULL;

WHILE t1 /= NULL LOOP

t2 := t1;

t1 := t1.link;

DEALLOCATE (t2);

END LOOP;

REPORT "The List cleared successfully!";

END clear;

 Freeing a Linked List

Using A Linked-List

March 2019 105

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Global Objects
Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type ConversionsGlobal Objects

March 2019 106

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Global Objects
 A signal declared in a package :

 Can be written to or read by all VHDL bodies that the package is visible to.

 Concurrent writing to a shared signal will be possible only if the signal is resolved.
A function for resolving multiple driving values is defined for resolved signals.

 A shared variable declared in a package is accessible to all bodies that use the
package.

 The scope of shared variables declared in an architecture is only within the body of
the architecture:

SHARED VARIABLE dangerous : INTEGER := 0;

 Shared variables are not protected against multiple simultaneous read and write
operations. However, signal semaphores for creating such a protection can be done
in VHDL.

March 2019 107

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Conversions
Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type ConversionsType Conversions

March 2019 108

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Conversions

Type

Conversions

Qualifiers

Explicit

Type

Conversions

Type

Conversions

Qualifiers

Explicit

Type

Conversions

March 2019 109

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Qualifiers

Qualifiers

March 2019 110

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

SA8: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= s_byte (5 DOWNTO 2);

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= (OTHER => ‘X’);

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <= v4l_byte’(OTHER => ‘X’);

Qualifiers

Type

Conversions

Qualifiers

Explicit

Type

Conversions

March 2019 111

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Explicit Type Conversions

Explicit

Type

Conversions

March 2019 112

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;

TYPE v4l_octal IS ARRAY (7 DOWNTO 0) of v4l;

.

SIGNAL sb : v4l_byte;

SIGNAL so : v4l_octal;

sb <= so; -- NOT ALLOWED

sb <= v4l_byte (so); -- Explicit Type Conversion

so <= v4l_octal (sb);

Explicit Type Conversions

Other Types and

Type-Related Issues

Standard

Nine-Value Logic

Subtypes Record Types

Alias Declaration Access Types

Global Objects Type Conversions

March 2019 113

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Standard Nine-Value Logic

Standard

Nine-Value Logic

March 2019 114

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 std_logic Sub-types

Standard Nine-Value Logic

TYPE

‘1’‘0’,‘X’,X01

‘Z’‘1’,‘0’,‘X’,X01Z

‘1’‘0’,‘X’,‘U’,UX01

‘Z’‘1’,‘0’,‘X’,‘U’,UX01Z

March 2019 115

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Predefined Attributes

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

March 2019 116

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Array Attributes

Array Attributes

March 2019 117

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Predefined Array Attributes

Array Attributes
ResultExampleDescriptionAttribute

3s_4by8 ‘LEFTLeft bound‘LEFT

0

7

s_4by8 ‘RIGHT

s_4by8 ‘RIGHT(2)

Right bound‘RIGHT

7s_4by8 ‘HIGH(2)Upper bound‘HIGH

0s_4by8 ‘LOW(2)Lower bound‘LOW

0 TO 7

3 DOWNTO 0

s_4by8 ‘RANGE(2)

s_4by8 ‘RANGE(1)

Range‘RANGE

7 DOWNTO 0

0 TO 3

s_4by8 ‘REVERSE_RANGE(2)

s_4by8 ‘REVERSE_RANGE(1)

Reverse range‘REVERSE_RANGE

4s_4by8 ‘LENGTHLength‘LENGTH

TRUE

FALSE

S_4by8 ‘ASCENDING(2)

s_4by8 ‘ASCENDING(1)

TRUE

If Ascending

‘ASCENDING

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

March 2019 118

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Attributes

Type Attributes

March 2019 119

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Predefined Type Attributes

Type Attributes
ResultExampleDescriptionAttribute

v4lv3l’BASEBase of type‘BASE

‘0’

‘X’

v3l’LEFT

v4l’LEFT

Left bound of type

or subtype

‘LEFT

‘Z’

‘Z’

v3l’RIGHT

v4l’RIGHT

Right bound of type

or subtype

‘RIGHT

Large

‘Z’

INTEGER’HIGH

v3l’HIGH

Upper bound of type

or subtype

‘HIGH

1

‘X’

POSITIVE’LOW

v4l’LOW

Lower bound of type

or subtype

‘LOW

3

0

v4l’POS(‘Z’)

v3l’POS(‘X’)

Position of value V

in base of type.

‘POS(V)

‘Z’

‘Z’

v4l’VAL(3)

v3l’VAL(3)

Value at Position P

in base of type.

‘VAL(P)

March 2019 120

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Predefined Type Attributes (Continued)

Type Attributes
ResultExampleDescriptionAttribute

‘Z’ v3l’SUCC(‘1’)Value, after value

V in base of type.

‘SUCC(V)

‘0’ v3l’PRED(‘1’)Value, before value

V in base of type.

‘PRED(V)

‘0’

Error

v3l’LEFTOF(‘1’)

v3l’LEFTOF(‘X’)

Value, left of value

V in base of type.

‘LEFTOF(V)

‘Z’

‘0’

v3l’RIGHTOF(‘1’)

v3l’RIGHTOF(‘X’)

Value, right of value

V in base of type.

‘RIGHTOF(V)

TRUEv4l’ASCENDINGTRUE if range is ascending‘ASCENDING

“Z”

“lda”

v4l’IMAGE(‘Z’)

opcode’IMAGE(lda)

Converts value

V of type to string.

‘IMAGE (V)

nopopcode’VALUE(“nop”)Converts string

S to value of type.

‘VALUE(S)

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

March 2019 121

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Signal Attributes

Signal Attributes

March 2019 122

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Predefined Signal Attributes. Signal s1 is of Type BIT

Signal Attributes

TypeKindExampleT/EAttribute

Attribute description for the specified example

As s1SIGNALs1’DELAYED (5 NS)-‘DELAYED

A copy of s1, but delayed by 5 NS. If no parameter or 0, delayed by delta.

Equivalent to TRANSPORT delay of s1.

BOOLEANSIGNALs1’STABLE (5 NS)EV‘STABLE

A signal that is TRUE if s1 has not changed in the last 5 NS. If no parameter or 0,

the resulting signal is TRUE if s1 has not changed in the current simulation

time.

March 2019 123

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Signal Attributes

BOOLEANVALUEs1’EVENTEV‘EVENT

In a simulation cycle, if s1 changes, this attribute becomes TRUE.

TIMEVALUEs1’LAST_EVENTEV‘LAST_EVENT

The amount of time since the last value change on s1. If s1’EVENT is TRUE, the

value of s1’LAST_VALUE is 0.

As s1VALUEs1’LAST_VALUEEV‘LAST_VALUE

The value of s1 before the most recent event occurred on this signal.

 Predefined Signal Attributes. Signal s1 is of Type BIT (Continued)

TypeKindExampleT/EAttribute

Attribute description for the specified example

March 2019 124

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Signal Attributes

 Predefined Signal Attributes. Signal s1 is of Type BIT (Continued)

BOOLEANSIGNALs1’QUIET (5 NS)TR‘QUIET

A signal that is TRUE if no transaction has been placed on s1 in the last 5 NS. If no

parameter or 0, the current simulation cycle is assumed.

BOOLEANVALUEs1’ACTIVETR‘ACTIVE

If s1 has had a transaction in the current simulation cycle, s1’ACTIVE will be TRUE

for this simulation cycle, for delta time.

TIMEVALUEs1’LAST_ACTIVETR‘LAST_ACTIVE

The amount of time since the last transaction occurred on s1. If s1’ACTIVE is

TRUE, s1’LAST_ACTIVE is 0.

TypeKindExampleT/EAttribute

Attribute description for the specified example

March 2019 125

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Signal Attributes

 Predefined Signal Attributes. Signal s1 is of Type BIT (Continued)

BITSIGNALs1’TRANSACTIONTR‘TRANSACTION

A signal that toggles each time a transaction occurs on s1. Initial value of this

attribute is not defined.

BOOLEANVALUEs1’DRIVING-‘DRIVING

If s1is being driven in a process, s1’DRIVING is TRUE in the same process.

As s1VALUEs1’DRIVING_VALUE-‘DRIVING_VALUE

The driving value of s1 from within the process this attribute is being applied.

TypeKindExampleT/EAttribute

Attribute description for the specified example

March 2019 126

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Results of Signal Attributes when Applied to the BIT Type Signal, s1

Signal Attributes
15 30 45 60

1510 20 25 5 10 0 155 10

010 5 10 0 5 10 0 05 10

T

0

T

F

T TT

FT

TIME(ns)

s1

s1'DELAYED(5ns)

s1'STABLE

s1'EVENT

s1'LAST_EVENT

s1'LAST_VALUE

s1'QUIET (5ns)

s1'ACTIVE

s1'LAST_ACTIVE

s1'TRANSACTION

March 2019 127

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ENTITY brief_d_flip_flop IS

PORT (d, c : IN BIT; q : OUT BIT);

END brief_d_flip_flop;

--

ARCHITECTURE falling_edge OF brief_d_flip_flop IS

SIGNAL tmp : BIT;

BEGIN

q <= d WHEN (c = ‘0’ AND c’EVENT);

END falling_edge;

 A Simple Falling Edge Flip-Flop Using Signal Attributes

Signal Attributes

March 2019 128

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FF: BLOCK (c = ‘0’ AND NOT c’STABLE) BEGIN

qf <= GUARDED din;

END BLOCK FF;

--

LT: BLOCK (c = ‘0’ AND c’EVENT) BEGIN

ql <= GUARDED din;

END BLOCK LT;

 A Simple Falling Edge Flip-Flop Using Signal Attributes

Signal Attributes

March 2019 129

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ENTITY brief_t_flip_flop IS

PORT (t : IN BIT; q : OUT BIT);

END brief_t_flip_flop;

--

ARCHITECTURE toggle OF brief_t_flip_flop IS

SIGNAL tmp : BIT;

BEGIN

tmp <= NOT tmp WHEN ((t = ‘0’ AND t’EVENT) AND

(t’DELAYED’STABLE(20 NS))

) ELSE tmp;

q <= tmp AFTER 8 NS;

END toggle;

 A Simple Toggle Flip-Flop Using Signal Attributes

Signal Attributes

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

March 2019 130

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Entity Attributes

Entity Attributes

March 2019 131

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ENTITY multiplexer_n_tester IS END ENTITY;

--

ARCHITECTURE timed OF multiplexer_n_tester IS

SIGNAL a : BIT_VECTOR(7 DOWNTO 0);

SIGNAL s : BIT_VECTOR(2 DOWNTO 0);

SIGNAL w1 : BIT;

FOR UUT1: mux_n

USE ENTITY

components.multiplexer(customizable);

BEGIN

UUT1: mux_n PORT MAP (a, s, w1);

onehot_data (a, 123 NS, 9);

consecutive_data (s, 79 NS, 11);

END ARCHITECTURE timed;

 Applying Entity Attributes

Entity Attributes

March 2019 132

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

ENTITY multiplexer IS

PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR;

w: OUT BIT);

END ENTITY multiplexer;

--

ARCHITECTURE customizable OF multiplexer IS BEGIN

ASSERT FALSE

REPORT customizable’SIMPLE_NAME SEVERITY NOTE;

ASSERT FALSE

REPORT customizable’PATH_NAME SEVERITY NOTE;

ASSERT FALSE

REPORT customizable’INSTANCE_NAME SEVERITY NOTE;

w <= mux(ins, s);

END ARCHITECTURE customizable;

 Applying Entity Attributes (Continued)

Entity Attributes

March 2019 133

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

--# ** Note: customizable

--# ** Note: :multiplexer_n_tester:uut1:

--# ** Note: :multiplexer_n_tester(timed)

:uut1@multiplexer(customizable):

 Entity Attribute Examples

Entity Attributes

March 2019 134

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

User-Defined Attributes

Predefined

Attributes

User-Defined
Attributes

Array Attributes Type Attributes

Signal Attributes Entity Attributes

User-Defined

Attributes

March 2019 135

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PACKAGE utility_attributes IS

TYPE timing IS RECORD

rise, fall : TIME;

END RECORD;

ATTRIBUTE delay : timing;

ATTRIBUTE sub_dir : STRING;

END utility_attributes;

 Attribute Definitions

User-Defined Attributes

March 2019 136

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

USE WORK.utility_attributes.ALL;

ENTITY multiplexer IS

PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR;

w: OUT BIT);

ATTRIBUTE sub_dir OF multiplexer :

ENTITY IS "/user/vhdl";

ATTRIBUTE delay OF w : SIGNAL IS (8 NS, 10 NS);

END ENTITY multiplexer;

--

ARCHITECTURE customizable OF multiplexer IS BEGIN

w <= ‘1’ AFTER w’delay.rise

WHEN mux(ins, s) = ‘1’

ELSE ‘0’ AFTER w’delay.fall;

END ARCHITECTURE customizable;

 Using Attributes

User-Defined Attributes

March 2019 137

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Standard Libraries and Packages

Standard

Libraries

and Packages

STANDARD
Package

TEXTIO
Package

and ASCII I/O

Std_logic_1164
Package

Std_logic_arith
Package

Standard

Libraries

and Packages

STANDARD
Package

TEXTIO
Package

and ASCII I/O

Std_logic_1164
Package

Std_logic_arith
Package

March 2019 138

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

STANDARD Package

STANDARD

Package

March 2019 139

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

STANDARD Package

 The STANDARD package is in the STD library.

 An internal language package

 Does not exist as a VHDL code.

 Basic types such as BIT, BIT_VECTOR, INTEGER are included

 VHDL logical, relational, and arithmetic operations are over loaded for basic types of
this package.

 Arithmetic operations are defined for INTEGER and REAL types

 Does not overload these operations for the BIT and BOOLEAN types

 Users can develop their own binary arithmetic functions.

 The standard numeric package (IEEE 1076.3) is the NUMERIC_BIT package that
contains overloading of arithmetic operations for the BIT and BIT_VECTOR types.

March 2019 140

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TEXTIO Package and ASCII I/O

Standard

Libraries

and Packages

STANDARD
Package

TEXTIO
Package

and ASCII I/O

Std_logic_1164
Package

Std_logic_arith
Package

TEXTIO

Package

and ASCII I/O

March 2019 141

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

FILE f: TEXT;

FILE f: TEXT IS “input.txt”;

FILE f: TEXT OPEN READ_MODE IS “input.txt”;

FILE_OPEN (f, “input.txt”, READ_MODE);

FILE_OPEN (f, “output.txt”, WRITE_MODE);

FILE_OPEN (f, “output.txt”, APPEND_MODE);

FILE_CLOSE (f);

TEXTIO Package and ASCII I/O

VARIABLE l: LINE;

March 2019 142

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

READLINE (f, l) -- reads a line of file f and places

it in buffer l of type LINE

READ (l, v, …) -- reads a value v of its type form l

WRITE (l, v, …) -- writes the value v to LINE l

WRIELINE (f, l) -- writes l to file f. Function

ENDFILE (f) -- returns TRUE if the end of file f

is reached

TEXTIO Package and ASCII I/O

March 2019 143

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TEXTIO Package and ASCII I/O

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO

March 2019 144

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TEXTIO Reading

TEXTIO

Reading

March 2019 145

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

PROCEDURE GetData

(SIGNAL s : OUT BIT_VECTOR; FILE f : TEXT)

IS

VARIABLE lbuf : LINE;

VARIABLE t : TIME;

VARIABLE d : BIT_VECTOR (s’RANGE);

BEGIN

WHILE NOT ENDFILE (f) LOOP

READLINE (f, lbuf);

READ (lbuf, t);

READ (lbuf, d);

s <= TRANSPORT d AFTER t;

END LOOP;

FILE_CLOSE (f);

END PROCEDURE GetData;

 Reading a TEXTIO File

TEXTIO Reading

March 2019 146

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

0 ns 00111000

10 ns 00101111

35 ns 10110000

45 ns 11101010

50 ns 01100001

55 ns 00101110

95 ns 11100011

110 ns 00011100

 Sample Data File

TEXTIO Reading

March 2019 147

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TEXTIO Writing

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO

TEXTIO

Writing

March 2019 148

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

USE STD.TEXTIO.ALL;

ENTITY multiplexer8_tester IS END ENTITY;

--

ARCHITECTURE timed OF multiplexer8_tester IS

SIGNAL a, b, w1 : BIT_VECTOR (7 DOWNTO 0);

SIGNAL s : BIT := ‘0’;

FILE Ain : TEXT OPEN READ_MODE IS "Ain.dat";

FILE Bin : TEXT OPEN READ_MODE IS "Bin.dat";

BEGIN

UUT1: ENTITY WORK.multiplexer8 (conditional)

PORT MAP (a, b, s, w1);

....................

....................

END ARCHITECTURE timed;

 Using Text Data for Input and Output

TEXTIO Writing

March 2019 149

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

....................

PROCESS (w1)

FILE Wout : TEXT OPEN WRITE_MODE IS"Wout.dat";

VARIABLE lbuf : LINE;

BEGIN

WRITE (lbuf, NOW, RIGHT, 8, NS);

WRITE (lbuf, w1, RIGHT, 9);

WRITELINE (Wout, lbuf);

END PROCESS;

GetData (a, Ain);

GetData (b, Bin);

s <= NOT s AFTER 25 NS WHEN NOW <= 140 NS

ELSE ‘0’;

END ARCHITECTURE timed;

 Using Text Data for Input and Output (Continued)

TEXTIO Writing

March 2019 150

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Std_logic TEXTIO

TEXTIO

Package

and ASCII I/O

TEXTIO

Reading

TEXTIO

Writing

Std_logic

TEXTIO

Std_logig

TEXTIO

March 2019 151

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE STD.TEXTIO.ALL;

USE IEEE.std_logic_TEXTIO.ALL;

 std_logic TEXTIO Package

Std_logic TEXTIO

Standard

Libraries

and Packages

STANDARD
Package

TEXTIO
Package

and ASCII I/O

Std_logic_1164
Package

Std_logic_arith
Package

March 2019 152

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Std_logic_1164 Package

Std_logic_1164

Package

March 2019 153

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Std_logic_1164 Package

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

March 2019 154

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Type Definition

Type

Definition

March 2019 155

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

TYPE std_ulogic IS ('U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0

'H', -- Weak 1

'-' -- Don't care

);

 Std_logic Enumeration Values

Type Definition

March 2019 156

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

SUBTYPE X01 IS resolved std_ulogic

RANGE 'X' TO '1'; -- ('X','0','1')

SUBTYPE X01Z IS resolved std_ulogic

RANGE 'X' TO 'Z'; -- ('X','0','1','Z')

SUBTYPE UX01 IS resolved std_ulogic

RANGE 'U' TO '1'; -- ('U','X','0','1')

SUBTYPE UX01Z IS resolved std_ulogic

RANGE 'U' TO 'Z'; -- ('U','X','0','1','Z')

 Subtypes of the std_logic Type

Type Definition

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

March 2019 157

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Overloaded Logical Operators

Overloaded

Logical

Operators

March 2019 158

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Overloaded logic operators for

 “AND”, “NAND”, “OR”, “NOR”, “XOR”, “XNOR” and “NOT”

 Overloaded for std_ulogic, and because std_logic is considered a subtype

of std_ulogic, they also work for the std_logic type.

 Also overloaded for std_logic_vector and std_ulogic_vector and

combinations of the two arrays.

Overloaded Logical Operators

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

March 2019 159

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Conversion Functions

Conversion

Functions

March 2019 160

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Functions for conversions to and from BIT and std_logic and its subsets.

 To_StdLogicVector converts

 BIT_VECTOR or std_ulogic_vector to std_logic_vector.

 TO_X01 that converts

 BIT, std_logic, std_ulogic and their vectorized versions to X01 and

std_logic_vector.

Conversion Functions

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

March 2019 161

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Edge Detection

Edge

Detection

March 2019 162

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Edge detection functions

 rising_edge

 falling_edge

 Recognized by most synthesis tools for flip-flop clock edge

detection.

Edge Detection

Std_logic_1164

Package

Type
Definition

Overloaded
Logical

Operators

Conversion
Functions

Edge
Detection

March 2019 163

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Std_logic_arith Package

Std_logic_arith
Package

March 2019 164

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 The IEEE standard arithmetic package

 An important package that eases the use of the VHDL language for arithmetic and
logical functions

 The std_logic_arith
 Defines SIGNED and UNSIGNED unconstrained arrays of std_logic.

 Overloads all arithmetic and relational operators of VHDL for

 SIGNED, INTEGER, and NATURAL types

 UNSIGNED, INTEGER, and NATURAL.

 With this overloading, we can use “+” for adding a signed or an unsigned
std_logic_vector with an integer.

 We can mix a signed or unsigned vector with an integer in relational operations,
i.e., “>”, “<”, “<=”, “>=”, “=”, and “\”.

Std_logic_arith Package

March 2019 165

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

Std_logic_arith Package

Std_logic_arith

Package

The

UNSIGNED

Package

The

SIGNED

Package

Std_logic_arith

Package

The

UNSIGNED

Package

The

SIGNED

Package

March 2019 166

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

The UNSIGNED Package

The

UNSIGNED

Package

March 2019 167

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Once an object is declared as SIGNED or UNSIGNED, conversion to the
other type and conversion to std_logic becomes difficult.

 The std_logic_unsigned package sits on top of the std_logic_arith package.

 Assumes all std_logic_vector declarations are unsigned and overloads all
arithmetic and relational operators for unsigned numbers declared as
std_logic_vector.

 The unsigned package already includes the arithmetic package.

The UNSIGNED Package

March 2019 168

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

-- Use This:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_UNSIGNED.ALL;

-- OR The Following:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_SIGNED.ALL;

 Using Unsigned and Signed

The UNSIGNED Package

Std_logic_arith

Package

The

UNSIGNED

Package

The

SIGNED

Package

March 2019 169

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

The SIGNED Package

The

SIGNED

Package

March 2019 170

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 Sits on top of the std_logic_arith package

 Forces all logical and relational operators to treat their operands as signed 2’s

complement numbers.

 The type mark recognized in this package is std_logic_vector that is treated as a

signed type.

 If a design requires both signed and unsigned arithmetic, the std_logic_arith or

NUMERIC_STD must be used.

 SIGNED and UNSIGNED packages only allow signed or unsigned arithmetic.

The SIGNED Package

March 2019 171

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

 This chapter focused on

 Linguistics aspects of VHDL

 Types

 Operators

 Overloading

 Introduced standard libraries that define standard types and operators. Use of
libraries and standard packages simplifies the use of VHDL for design or
description of hardware based on standard technologies. A lot of times, use of
packages eliminates the need for understanding many of difficult language
constructs. However, for a better understanding of the languages and with a
look into future technologies, the issues discussed in the earlier part of chapter
become important.

Summary

Acknowledgment

Slides developed by:

Homa Alemzadeh

Last edited February 2019, by:

Saba Yousefzadeh

March 2019 172

VHDL: Modular Design and Synthesis of Cores and

Systems Copyright Z. Navabi

