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Process Statements
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label: PROCESS
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END PROCESS label;

A Process Statement Block Diagram
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Statement Part of a Process

label: PROCESS
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END PROCESS label;

= A Process Runs in Zero Time, Repeats Forever, Unless Suspended
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Statement Part of a Process
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ARCHITECTURE sequentiality demo OF partial process IS
BEGIN

PROCESS

BEGIN

END PROCESS;
END sequentiality demo;

®  Zero Distance Signal Assignments
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Statement Part of a Process
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ARCHITECTURE data availability demo OF partial process
IS
SIGNAL x : BIT :="0’;
BEGIN
PROCESS BEGIN

END PROCESS;
END data availability demo;

= Partial Code for Demonstrating Delay in Assignment of Values to Signals
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Process Sensitivity List

ENTITY multiplexer IS
PORT (a, b, s : IN BIT; w : OUT BIT) ;
END ENTITY ;
ARCHITECTURE processing OF multiplexer IS
BEGIN
com : BEROCESSENEVRILPSHN BEGIN
IF s='0' THEN w <= a AFTER 1.4 NS;
ELSE w <= b AFTER 1.5 NS;
END IF;
END PROCESS com;
END ARCHITECTURE processing;

"  Multiplexer Described Using a Process with Sensitivity List
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Process Sensitivity List

ENTITY flipflop IS

END ENTITY ;

ARCHITECTURE synch
reg: [BROCESSENCIKIN BEGIN
IF (clk = 'l') THEN

ELSE qout <= din;
END IF;
END IF;
END PROCESS reg;
END ARCHITECTURE synch process;

IF reset = 'l' THEN gout <=

PORT (reset, din, clk : IN BIT; qout

IO';

OUT BIT) ;

process OF flipflop IS BEGIN

= flipflop Using Process with Sensitivity List
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Process Sensitivity List

reg

PROCESS

BEGIN
IF (clk = '1'") THEN
IF reset = 'l' THEN
gout <= '0';
ELSE
gout <= din;
END IF;
END TIF;
END PROCESS reg;

—— process_label

—— sensitivity_list
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® Syntax of Process with Sensitivity List
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Process Sensitivity List

ARCHITECTURE asynch process OF flipflop IS
BEGIN
reg: PROCESS (clk, reset) BEGIN
IF reset = 'l' THEN
gqout <= '0' AFTER 1.2 NS;
ELSIF (clk = 'l' AND clk'EVENT) THEN
qout <= din AFTER 1.3 NS;
END IF;
END PROCESS reg;
END ARCHITECTURE asynch process;

® Process Statement Implementing Asynchronous Control
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Postponed Processes
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_ /,/ //
com: PROCESS (a, b, s) com: POSTPONED PROCESS (a, b, s)
END PROCESS com; END PROCESS com;

Activation of a Postponed Process List
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Passive Processes
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ENTITY flipflop IS

PORT (reset, din, clk : IN BIT; qout : OUT BIT) ;
BEGIN

timing: PROCESS (clk, reset, din)

VARIABLE t clkl, t clkO0 : TIME := 0 NS;
VARIABLE t clkon, t clkoff : TIME := 0 NS;
BEGIN
IF clk'EVENT THEN
IF clk = '"l" THEN --rising edge
t _clkl := NOW;
t _clkoff := t _clkl - t clkO;
ELSE -—-faling edge
t _clk0 := NOW;
t clkon := t clk0 - t clkil;
END IF;
END IF;

IF t clkon /= t clkoff THEN
REPORT "Not 50% duty cycle: On:"
& TIME'IMAGE (t clkon) & "Off:"
& TIME'IMAGE(t_clkoff);

END IF;
IF clk = 'l' AND din'EVENT THEN
REPORT '"The din input changed while clk was '1'";
END IF;
END PROCESS timing;
END ENTITY;
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Sequential Wait Statements

BOR) waiting time;

ON§waiting sensitivity 1list;
waiting condition;

0 any time unit;
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Sequential Wait Statements

ARCHITECTURE process wait OF multiplexer IS
BEGIN
com: PROCESS
BEGIN
IF s='0' THEN
w <= a AFTER 1.4 NS;
ELSE
w <= b AFTER 1.5 NS;
END IF;
= o
END PROCESS com;
END ARCHITECTURE process wait;

" Process with WAIT
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ential Wait Statements

ARCHITECTURE synch waituntil OF flipflop IS
BEGIN
reg: PROCESS

BEGIN
IF reset = 'l' THEN
qout <= '0O' AFTER 1.2 NS;
ELSE
gout <= din AFTER 1.3 NS;
END IF;

WAL EOR N

WSSO N Al
END PROCESS reg;
END ARCHITECTURE synch waituntil;

"  Multiple WAIT Statements
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Function Definition
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FUNCTION mux
(databits : BIT VECTOR; sel : BIT VECTOR)
RETURN BIT IS

VARIABLE selint : INTEGER := 0O;
BEGIN
FOR i1 IN sel'LENGTH - 1 DOWNTO O LOOP
IF sel (i) = 'l' THEN
selint := selint + 2**3i;
END IF;
END LOOP;

RETURN databits (selint) ;

®= A Simple Function Definition
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Function Definition

FUNCTION
mux —— designator

(databits : BIT VECTOR; sel : BIT VECTOR) —— formal_parameter_list

uoneooads
welboidgns

—— type_mark

| VARIABLE selint : INTEGER := 0; —— subprogram_declarative_part
BEGIN
FOR i IN sel'LENGTH - 1 DOWNTO O LOOP
IF sel (i) = '1!

THEN selint := selint + 2**ji; sequential_
statement

Apoq weiboidgns

END TIF;
END LOOP;

RETURN
return_ sequential_

databits (selint) —— expression
statement statement
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END FUNCTION mux;

®  Function Syntax Details
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Function Definition
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ARCHITECTURE functional OF multiplexer IS

EUNCIONSMUESENE IS IS SN B STORY

—_—

ENDRFUNCTON NIy

SIGNAL sel : BIT VECTOR (0 DOWNTO O) ;
BEGIN

sel (0) <= s;

w <= nuxNEyp)yseily AFTER 8 NS;
END ARCHITECTURE functional;

®=  Calling a Function
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Procedure Definition

PROCEDURE consecutive data

(SIGNAL target : OUT BIT VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS

VARIABLE data : BIT VECTOR (target'RANGE) ;
VARIABLE sum, carry : BIT;

BEGIN
FOR 1 IN 1 TO n LOOP
carry := '1';
FOR j IN data'REVERSE RANGE LOOP
sum := data (j) XOR carry;
carry := data (j) AND carry;
data (j) := sum;
END LOOP;
target <= TRANSPORT data AFTER ti * 1i;
END LOOP;

END PROCEDURE consecutive_data;
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Concurrent Procedure Calls

ARCHITECTURE procedural OF multiplexer8 tester IS

SIGNAL a, b, w2 : BIT VECTOR (7 DOWNTO O) ;
SIGNAL s : BIT;
SIGNAL sel : BIT VECTOR (0 TO O0) ;
BEGIN
UUT2: ENTITY WORK.multiplexer8 (direct)
PORT MAP (a, b, s, w2);
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s <= sel(0) ;
END ARCHITECTURE procedural;
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Procedure Definition

PROCEDURE onehot data
(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS
VARIABLE data : BIT VECTOR (target'RANGE) ;
VARIABLE i : INTEGER := 0O;
BEGIN
data (0) := '1';
WHILE i < n LOOP
data := data ROR 1;
target <= TRANSPORT data AFTER ti * 1i;
i :=1 4+ 1;
END LOOP;
END PROCEDURE onehot data;

= Using While Loop
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Language Aspects of Subprograms

PROCEDURE consecutive data

(
SIGNAL target : OUT BIT VECTOR; —— g0 gggg;f?gg;—

CONSTANT ti : TIME; CONSTANT n : INTEGER parameter_list

)
I8

VARIABLE data : BIT VECTOR (target'RANGE) ; subprogram_
BIT; declarative_part

VARIABLE sum, carry

BEGIN
FOR 1 IN 1 TO n LOOP

sequential _ subprogram_
statement statement_part

END LOOP;
END PROCEDURE consecutive data;

®  Details of a Subprogram Body
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Nesting Subprogr

dImsS

FUNCTION int (invec

BEGIN
FOR i1 IN invec'L
IF invec (1)
tmp := tmp
END IF;
END LOOP;
RETURN tmp;
END FUNCTION int;
FUNCTION mux (datab
RETURN BIT IS
BEGIN
RETURN databits
END FUNCTION mux;

BIT VECTOR) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0;

ENGTH - 1 DOWNTO 0 LOOP
= '1' THEN
+ 2%%j;

its : BIT VECTOR; sel : BIT VECTOR)

(int(sel)) ;

= Using a Function in Another

March 2019
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Nesting Subprograms

PROCEDURE inc (VARIABLE invec : INOUT BIT_VECTOR) IS
VARIABLE sum, carry : BIT;

BEGIN

carry := '1l';

FOR j IN invec'REVERSE RANGE LOOP
sum := invec (Jj) XOR carry;
carry := invec (j) AND carry;
invec (j) := sum;

END LOOP;

END PROCEDURE inc;
PROCEDURE consecutive data
(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n : INTEGER) IS
VARIABLE data : BIT VECTOR (target'RANGE) ;
BEGIN
FOR i IN 1 TO n LOOP
inc (data) ;
target <= TRANSPORT data AFTER ti * i;
END LOOP;
END PROCEDURE consecutive data;
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Nesting Subprograms

FUNCTION dcd (bin : BIT VECTOR) RETURN BIT VECTOR IS
VARIABLE tmp : BIT_VECTOR(O TO 2**bin'LENGTH - 1) ;
BEGIN
tmp := (OTHERS => '0');
tmp (ERELERY) := '1l';
RETURN tmp;
END FUNCTION decd;

®  Using /nt Function
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Nesting Subprograms

ENTITY decoder IS

ded ou : OUT BIT VECTOR) ;
END ENTITY decoder;
ARCHITECTURE functional OF decoder IS
BEGIN
decd ou <= 1!
ELSE (OTHERS =>
END ARCHITECTURE functional;

PORT (bin in : IN BIT VECTOR; en : IN BIT;

VOV);

® Using dcd Function in a Concurrent Statement
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A Package of Utilities

IS
FUNCTION mux (databits : BIT;VECTOR;
FUNCTION bin (inint, size : INTEGER)
PROCEDURE consecutive data

(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n

ENDRPACKAGERBASTCUCINaRSTeSH

FUNCTION int (invec : BIT VECTOR) RETURN INTEGER;
sel : BIT VECTOR) RETURN BIT;
RETURN BIT VECTOR;

FUNCTION dcd (bin : BIT VECTOR) RETURN BIT VECTOR;

INTEGER) ;

= An Example Package Declaration
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Subprogram Definition in Package Body

March 2019

PACKAGE BODY BasicUtilities IS
FUNCTION int : see Figure 4.37
FUNCTION mux : see Figure 4.31
FUNCTION bin (inint, size : INTEGER) RETURN BIT VECTOR IS
VARIABLE tmpi : INTEGER := inint;
VARIABLE tmpb : BIT VECTOR (size - 1 DOWNTO O0) ;
BEGIN
tmpb := (OTHERS => '0');
FOR i IN O TO size - 1 LOOP
IF ((tmpi MOD 2) = 1) THEN

tmpb (1) := '1';
END IF;
tmpi := tmpi / 2;
END LOOP;

RETURN tmpb;
END FUNCTION bin;
—— PROCEDURE inc: see Figure 5.21
—— PROCEDURE consecutive data: see Figure 5.21
END PACKAGE BODY BasicUtilities;
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A Package of Utilities

PACKAGE BasicUtilities IS

FUNCTION mux

(databits : BIT VECTOR; sel : BIT VECTOR) subprogram_
- — declaration
RETURN BIT;

END PACKAGE BasicUtilities;

PACKAGE BODY BasicUtilities IS

FUNCTION mux

(databits : BIT VECTOR; sel : BIT VECTOR)
RETURN BIT IS
. BEGIN body
RETURN databits (int(sel)) ;
END FUNCTION mux;

subprogram__

END PACKAGE BODY BasicUtilities;

= Package Declaration and Body Syntax
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A Package of Components
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LIBRARY utilities;
USE utilities.BasicUtilities.ALL;
ENTITY aludfunction IS
PORT (ai, bi : IN BIT VECTOR;
mode : IN BIT VECTOR (1 DOWNTO O0) ;
aluout : OUT BIT VECTOR) ;

END ENTITY ;

A Design Unit Compiled in our GenericParts Library (continued)
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A Package of Components

ARCHITECTURE customizable OF aludfunction IS
CONSTANT size : INTEGER := ai'LENGTH;
BEGIN
PROCESS (ai, bi, mode) BEGIN
CASE BIT_VECTOR (mode) IS

WHEN "00" =

aluout <= bin(int(ai) + int(bi), size) ;
WHEN "01" =

aluout <= bin(int(ai) - int(bi), size) ;
WHEN "10" =

aluout <= ai AND bi;

WHEN "11" =>
aluout <= ai OR bi;
WHEN OTHERS =>
aluout <= bin (0, size) ;
END CASE;
END PROCESS
END ARCHITECTURE customizable;

= A Design Unit Compiled in our GenericParts Library
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A Package of Components

LIBRARY utilities;
USE utilities.BasicUtilities.ALL;
ENTITY dregister IS
PORT (rst, clk : IN BIT; regin : IN BIT VECTOR;
regout : OUT BIT VECTOR) ;
END ENTITY ;

ARCHITECTURE synchronous OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;
BEGIN
reg: PROCESS (clk) BEGIN
IF (clk = 'l') THEN
IF rst = 'l' THEN regout <= bin (0, size) ;
ELSE regout <= regin;
END IF;
END IF;

END PROCESS reg;
END ARCHITECTURE synchronous;

= D-Register Compiled in GenericParts
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A Package of Components
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PACKAGE GenericParts IS

COMPONENT dec n PORT
(bin in : IN BIT VECTOR; en : IN BIT;
ded ou : OUT BIT VECTOR) ;

END COMPONENT ;

COMPONENT alu n PORT
(ai, bi : IN BIT VECTOR;
mode : IN BIT VECTOR (1 DOWNTO O0) ;
aluout : OUT BIT VECTOR) ;

END COMPONENT ;

COMPONENT mux n PORT
(ins : IN BIT VECTOR;
s : IN BIT VECTOR; w : OUT BIT)

END COMPONENT ;

COMPONENT ssd f PORT
(bcd : IN BIT VECTOR (3 DOWNTO O0) ;
display : OUT BIT VECTOR (1 TO 7)) ;

END COMPONENT ;

COMPONENT dreg n PORT
(rst, clk : IN BIT; regin : IN BIT VECTOR;
regout : OUT BIT VECTOR) ;

END COMPONENT ;

END PACKAGE GenericParts;

VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007
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A Package of Components

LTBRARY utilities;

USE utilities.BasicUtilities.ALL;
LIBRARY components;

USE components.GenericParts.ALL;
USE components.ALL;

ENTITY alu n tester IS END ENTITY;

ARCHITECTURE timed OF alu_p_tester IS

SIGNAL 1li,ri,ao : BIT VECTOR (7 DOWNTO O0)
FOR UUT1 : alu_n USE ENTITY
components.alud4function (customizable) ;
BEGIN
UUT1: alu n PORT MAP (li, ri, m, ao);
consecutive data (m, 123 NS, 13);
consecutive data (l1i, 223 NS, 9);
consecutive data (ri, 257 NS, 9);
END ARCHITECTURE timed;

SIGNAL m : BIT VECTOR (1 DOWNTO 0) := "00";
;= "00000100" ;

—— Line
—— Line
—— Line
—— Line
—— Line

a s Wb B

= Using Components and their Declarations
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If Statement

—— condition
THEN

w <= a AFTER 1.4 NS; signal_ sequence_of

assignment statements

ELSE

W <= b AFTER 1.5 NS; — Signal_ sequence_of
' assignment  statements

END IF;

= Simple if Statement Syntax
VHDL: Modular Design and

March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Juswajels Ji

¢y



Loop Statement

FOR
i ~1©0no iteration_

~ scheme
LOOP

variable
—— assignment_

. FOR j IN data'REVERSE RANGE roop . Statement

garry = T1';

sum := data (j) XOR carry;

carry := data (j) AND carry; loop_
statement
data (j) := sum;
END LOOP;
signal_
target <= TRANSPORT data AFTER ti * 1i; — assignment

exp LOOP;  __statement

"= Loop Statement with a FOR Iteration Scheme
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Loop Statement

Long runing : LOOP

IF x = 25 THEN

END IF;

END LOOP long runing;

= Partial Code for Demonstrating Exiting from a Potentially Infinite LLoop
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Loop Statement
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loop 1 : FOR i IN 5 TO 25 LOOP
;eéuéntial_statement_l;
;eéuéntial_statement_2;
I.Loép;Z : WHILE j <= 90 LOOP

sequential statement 3;
sequential statement 4;

sequential statement 5;
sequential statement 6;

END LOOP loop 2;

END LOOP loop 1;END LOOP long runing;

Partial Code for Demonstrating Conditional Next Statements in a L.oop
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Case Statement

CASE
BIT VECTOR (mode) expression
IS
WHEN
oo™ case_

=> statement__

alternative
aluout bin(int (ai) +

3 sequence_of _
int(bi), size); statements

case_statement_alternative

"01"

\AJ 1 O \AJ
case_statement_alternative

\AJ l l \AJ
case_statement_alternative

case_statement_alternative

aluout bin (0, size) ;
END CASE;

= Syntax Details of Case Statement
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Assertion Statement

- general format :

ASSERT assertion_condition

REPORT "reporting message"
SEVERITY severity level;
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-tion Statement

ARCHITECTURE sync timed OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;
BEGIN
reg: PROCESS (clk)
VARIABLE last edge, duration : TIME := 0 NS;
BEGIN
duration := NOW - last edge;
last edge := NOW;
ASSERTENOTEN(AUTEaEH
REPORT.
IF (clk = 'l') THEN
IF rst = 'l' THEN regout <= bin (0, size) ;
ELSE regout <= regin;
END IF;
END IF';

END PROCESS reg;
END ARCHITECTURE sync timed;

= Architecture for Dregister Using Sequential ASSERT
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" The focus of this chapter was on description of hardware using sequential
statements

= A sequential statement offers a convenient way of describing behavior of a
hardware component.

= VHDL bodies for inclusion of sequential statements are
"process statements
=subprograms.

" Following subjects were discussed in this chapter
=Details of these constructs and various forms of their utilizations
=VVHDL library structures and packages

* how packages can be used for inclusion of subprograms and component
declarations was also showed.
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