Chapter 5

Sequential Constructs for
RT Level Descriptions

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Sequential Constructs for
RT Level Descriptions

5.1 Process Statement
5.1.1 Declarative Part of a Process
5.1.2 Statement Part of a Process
5.1.3 Process Sensitivity List
5.1.4 Postponed Processes

5.1.5 Passive Processes
5.2 Sequential Wait Statements

5.3 VHDL Subprograms
5.3.1 Function Definition
5.3.2 Procedure Definition
5.3.3 Language Aspects of Subprograms

5.3.4 Nesting Subprograms

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Sequential Constructs for
RT Level Descriptions

5.4 VHDL Library Structure
5.4.1 Creating Libraries
5.4.2 Using Libraries

5.5 Packaging Utilities and Components
5.5.1 A Package of Utilities
5.5.2 A Package of Components

5.6 Sequential Statements
5.6.1 If Statement
5.6.2 Loop Statement
5.6.3 Case Statement
5.6.4 Assertion Statement

5.7 Summary

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Sequential Statements

March 2019

Sequential
Statements

Process VHDILL V,HDL
ILibrary
Statements Subptogtrams

Structures

Sequential
Wait
Statements

Sequential
Statements

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Process Statements

Sequential
Statements

VHDL VHDL

ILibrary
Subprogrm Structutes

Sequential
Wait
Statements

Sequential
Statements

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Process Statements

March 2019

label: PROCESS

Always Alive

Non-SIGNAL process_
Declarations declarative_part

d

Always Active

Sequential process_
Statements statement_part

P
o
o
[1°4
w
(72}
[72)
—
D
—
D
=
D
=
—

END PROCESS label;

A Process Statement Block Diagram

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

JUBWA)R)S JUALINOUOI

Statement Part of a Process

label: PROCESS

Declarations

d

Repeats Forever,
In Zero Time,
Unless Suspended

2
o
Q
®
]
7]
)
[
)
(g
)
=
)
=
L

END PROCESS label;

= A Process Runs in Zero Time, Repeats Forever, Unless Suspended

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Statement Part of a Process

March 2019

ARCHITECTURE sequentiality demo OF partial process IS
BEGIN

PROCESS

BEGIN

END PROCESS;
END sequentiality demo;

® Zero Distance Signal Assignments

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Statement Part of a Process

March 2019

ARCHITECTURE data availability demo OF partial process
IS
SIGNAL x : BIT :="0’;
BEGIN
PROCESS BEGIN

END PROCESS;
END data availability demo;

= Partial Code for Demonstrating Delay in Assignment of Values to Signals

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Process Sensitivity List

ENTITY multiplexer IS
PORT (a, b, s : IN BIT; w : OUT BIT) ;
END ENTITY ;
ARCHITECTURE processing OF multiplexer IS
BEGIN
com : BEROCESSENEVRILPSHN BEGIN
IF s='0' THEN w <= a AFTER 1.4 NS;
ELSE w <= b AFTER 1.5 NS;
END IF;
END PROCESS com;
END ARCHITECTURE processing;

" Multiplexer Described Using a Process with Sensitivity List

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Process Sensitivity List

ENTITY flipflop IS

END ENTITY ;

ARCHITECTURE synch
reg: [BROCESSENCIKIN BEGIN
IF (clk = 'l') THEN

ELSE qout <= din;
END IF;
END IF;
END PROCESS reg;
END ARCHITECTURE synch process;

IF reset = 'l' THEN gout <=

PORT (reset, din, clk : IN BIT; qout

IO';

OUT BIT) ;

process OF flipflop IS BEGIN

= flipflop Using Process with Sensitivity List

VHDL: Modular Design and

March 2019 Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

AR

Process Sensitivity List

reg

PROCESS

BEGIN
IF (clk = '1'") THEN
IF reset = 'l' THEN
gout <= '0';
ELSE
gout <= din;
END IF;
END TIF;
END PROCESS reg;

—— process_label

—— sensitivity_list

0 7]
@ (0]
Q Keo]

Juswiaje)s” [enuan

Juswiaje)s” [enuan

® Syntax of Process with Sensitivity List

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Jed juswale)s ssaoo.d

d

JusWa)R)S SS820.

VY

Process Sensitivity List

ARCHITECTURE asynch process OF flipflop IS
BEGIN
reg: PROCESS (clk, reset) BEGIN
IF reset = 'l' THEN
gqout <= '0' AFTER 1.2 NS;
ELSIF (clk = 'l' AND clk'EVENT) THEN
qout <= din AFTER 1.3 NS;
END IF;
END PROCESS reg;
END ARCHITECTURE asynch process;

® Process Statement Implementing Asynchronous Control

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Postponed Processes

March 2019

_ /,/ //
com: PROCESS (a, b, s) com: POSTPONED PROCESS (a, b, s)
END PROCESS com; END PROCESS com;

Activation of a Postponed Process List

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

V¢

Passive Processes

March 2019

ENTITY flipflop IS

PORT (reset, din, clk : IN BIT; qout : OUT BIT) ;
BEGIN

timing: PROCESS (clk, reset, din)

VARIABLE t clkl, t clkO0 : TIME := 0 NS;
VARIABLE t clkon, t clkoff : TIME := 0 NS;
BEGIN
IF clk'EVENT THEN
IF clk = '"l" THEN --rising edge
t _clkl := NOW;
t _clkoff := t _clkl - t clkO;
ELSE -—-faling edge
t _clk0 := NOW;
t clkon := t clk0 - t clkil;
END IF;
END IF;

IF t clkon /= t clkoff THEN
REPORT "Not 50% duty cycle: On:"
& TIME'IMAGE (t clkon) & "Off:"
& TIME'IMAGE(t_clkoff);

END IF;
IF clk = 'l' AND din'EVENT THEN
REPORT '"The din input changed while clk was '1'";
END IF;
END PROCESS timing;
END ENTITY;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yo

Process Statements

Sequential
Statements
|
| | |
Process VHDILL V,HDL
ILibrary
Statements Subprograms
Structures
Sequential
Statements

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

1

Sequential Wait Statements

BOR) waiting time;

ON§waiting sensitivity 1list;
waiting condition;

0 any time unit;

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

VY

Sequential Wait Statements

ARCHITECTURE process wait OF multiplexer IS
BEGIN
com: PROCESS
BEGIN
IF s='0' THEN
w <= a AFTER 1.4 NS;
ELSE
w <= b AFTER 1.5 NS;
END IF;
= o
END PROCESS com;
END ARCHITECTURE process wait;

" Process with WAIT

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

SeqL

March 2019

ential Wait Statements

ARCHITECTURE synch waituntil OF flipflop IS
BEGIN
reg: PROCESS

BEGIN
IF reset = 'l' THEN
qout <= '0O' AFTER 1.2 NS;
ELSE
gout <= din AFTER 1.3 NS;
END IF;

WAL EOR N

WSSO N Al
END PROCESS reg;
END ARCHITECTURE synch waituntil;

" Multiple WAIT Statements

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

14

Process Statements

Sequential
Statements

VHDIL
ILibrary
Structures

Process
Statements

Sequential
Wait
Statements

Sequential
Statements

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Function Definition

March 2019

FUNCTION mux
(databits : BIT VECTOR; sel : BIT VECTOR)
RETURN BIT IS

VARIABLE selint : INTEGER := 0O;
BEGIN
FOR i1 IN sel'LENGTH - 1 DOWNTO O LOOP
IF sel (i) = 'l' THEN
selint := selint + 2**3i;
END IF;
END LOOP;

RETURN databits (selint) ;

®= A Simple Function Definition

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Y)

Function Definition

FUNCTION
mux —— designator

(databits : BIT VECTOR; sel : BIT VECTOR) —— formal_parameter_list

uoneooads
welboidgns

—— type_mark

| VARIABLE selint : INTEGER := 0; —— subprogram_declarative_part
BEGIN
FOR i IN sel'LENGTH - 1 DOWNTO O LOOP
IF sel (i) = '1!

THEN selint := selint + 2**ji; sequential_
statement

Apoq weiboidgns

END TIF;
END LOOP;

RETURN
return_ sequential_

databits (selint) —— expression
statement statement

»
c
o

S
S
o

«Q
=,
)

IB
»
—
)
—
@
3
@
S

Il—O-

o
o
=1

-
14

END FUNCTION mux;

® Function Syntax Details

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Function Definition

March 2019

ARCHITECTURE functional OF multiplexer IS

EUNCIONSMUESENE IS IS SN B STORY

—_—

ENDRFUNCTON NIy

SIGNAL sel : BIT VECTOR (0 DOWNTO O) ;
BEGIN

sel (0) <= s;

w <= nuxNEyp)yseily AFTER 8 NS;
END ARCHITECTURE functional;

®= Calling a Function

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yy

Procedure Definition

PROCEDURE consecutive data

(SIGNAL target : OUT BIT VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS

VARIABLE data : BIT VECTOR (target'RANGE) ;
VARIABLE sum, carry : BIT;

BEGIN
FOR 1 IN 1 TO n LOOP
carry := '1';
FOR j IN data'REVERSE RANGE LOOP
sum := data (j) XOR carry;
carry := data (j) AND carry;
data (j) := sum;
END LOOP;
target <= TRANSPORT data AFTER ti * 1i;
END LOOP;

END PROCEDURE consecutive_data;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

March 2019

Concurrent Procedure Calls

ARCHITECTURE procedural OF multiplexer8 tester IS

SIGNAL a, b, w2 : BIT VECTOR (7 DOWNTO O) ;
SIGNAL s : BIT;
SIGNAL sel : BIT VECTOR (0 TO O0) ;
BEGIN
UUT2: ENTITY WORK.multiplexer8 (direct)
PORT MAP (a, b, s, w2);

S
v
(o
i
A

l
- \-l-

- (-l.-

l

t

)

-

1

i |
Live data
{ y el
ive C

&fr
l
{
{r

s <= sel(0) ;
END ARCHITECTURE procedural;

VHDL: Modular Design and

March 2019

Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yo

Procedure Definition

PROCEDURE onehot data
(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS
VARIABLE data : BIT VECTOR (target'RANGE) ;
VARIABLE i : INTEGER := 0O;
BEGIN
data (0) := '1';
WHILE i < n LOOP
data := data ROR 1;
target <= TRANSPORT data AFTER ti * 1i;
i :=1 4+ 1;
END LOOP;
END PROCEDURE onehot data;

= Using While Loop

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Y1

Language Aspects of Subprograms

PROCEDURE consecutive data

(
SIGNAL target : OUT BIT VECTOR; —— g0 gggg;f?gg;—

CONSTANT ti : TIME; CONSTANT n : INTEGER parameter_list

)
I8

VARIABLE data : BIT VECTOR (target'RANGE) ; subprogram_
BIT; declarative_part

VARIABLE sum, carry

BEGIN
FOR 1 IN 1 TO n LOOP

sequential _ subprogram_
statement statement_part

END LOOP;
END PROCEDURE consecutive data;

® Details of a Subprogram Body

VHDL: Modular Design and

March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Apoq~ welsboidgns

Yv

Nesting Subprogr

dImsS

FUNCTION int (invec

BEGIN
FOR i1 IN invec'L
IF invec (1)
tmp := tmp
END IF;
END LOOP;
RETURN tmp;
END FUNCTION int;
FUNCTION mux (datab
RETURN BIT IS
BEGIN
RETURN databits
END FUNCTION mux;

BIT VECTOR) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0;

ENGTH - 1 DOWNTO 0 LOOP
= '1' THEN
+ 2%%j;

its : BIT VECTOR; sel : BIT VECTOR)

(int(sel)) ;

= Using a Function in Another

March 2019

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

March 2019

Nesting Subprograms

PROCEDURE inc (VARIABLE invec : INOUT BIT_VECTOR) IS
VARIABLE sum, carry : BIT;

BEGIN

carry := '1l';

FOR j IN invec'REVERSE RANGE LOOP
sum := invec (Jj) XOR carry;
carry := invec (j) AND carry;
invec (j) := sum;

END LOOP;

END PROCEDURE inc;
PROCEDURE consecutive data
(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n : INTEGER) IS
VARIABLE data : BIT VECTOR (target'RANGE) ;
BEGIN
FOR i IN 1 TO n LOOP
inc (data) ;
target <= TRANSPORT data AFTER ti * i;
END LOOP;
END PROCEDURE consecutive data;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

AR

Nesting Subprograms

FUNCTION dcd (bin : BIT VECTOR) RETURN BIT VECTOR IS
VARIABLE tmp : BIT_VECTOR(O TO 2**bin'LENGTH - 1) ;
BEGIN
tmp := (OTHERS => '0');
tmp (ERELERY) := '1l';
RETURN tmp;
END FUNCTION decd;

® Using /nt Function

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Nesting Subprograms

ENTITY decoder IS

ded ou : OUT BIT VECTOR) ;
END ENTITY decoder;
ARCHITECTURE functional OF decoder IS
BEGIN
decd ou <= 1!
ELSE (OTHERS =>
END ARCHITECTURE functional;

PORT (bin in : IN BIT VECTOR; en : IN BIT;

VOV);

® Using dcd Function in a Concurrent Statement

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

AR

Process Statements

March 2019

Sequential
Statements

Process VHDL
Statements Subprograms

Sequential
Wait
Statements

Sequential
Statements

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yy

A Package of Utilities

IS
FUNCTION mux (databits : BIT;VECTOR;
FUNCTION bin (inint, size : INTEGER)
PROCEDURE consecutive data

(SIGNAL target : OUT BIT VECTOR;
CONSTANT ti : TIME; CONSTANT n

ENDRPACKAGERBASTCUCINaRSTeSH

FUNCTION int (invec : BIT VECTOR) RETURN INTEGER;
sel : BIT VECTOR) RETURN BIT;
RETURN BIT VECTOR;

FUNCTION dcd (bin : BIT VECTOR) RETURN BIT VECTOR;

INTEGER) ;

= An Example Package Declaration

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yy

Subprogram Definition in Package Body

March 2019

PACKAGE BODY BasicUtilities IS
FUNCTION int : see Figure 4.37
FUNCTION mux : see Figure 4.31
FUNCTION bin (inint, size : INTEGER) RETURN BIT VECTOR IS
VARIABLE tmpi : INTEGER := inint;
VARIABLE tmpb : BIT VECTOR (size - 1 DOWNTO O0) ;
BEGIN
tmpb := (OTHERS => '0');
FOR i IN O TO size - 1 LOOP
IF ((tmpi MOD 2) = 1) THEN

tmpb (1) := '1';
END IF;
tmpi := tmpi / 2;
END LOOP;

RETURN tmpb;
END FUNCTION bin;
—— PROCEDURE inc: see Figure 5.21
—— PROCEDURE consecutive data: see Figure 5.21
END PACKAGE BODY BasicUtilities;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Ye

A Package of Utilities

PACKAGE BasicUtilities IS

FUNCTION mux

(databits : BIT VECTOR; sel : BIT VECTOR) subprogram_
- — declaration
RETURN BIT;

END PACKAGE BasicUtilities;

PACKAGE BODY BasicUtilities IS

FUNCTION mux

(databits : BIT VECTOR; sel : BIT VECTOR)
RETURN BIT IS
. BEGIN body
RETURN databits (int(sel)) ;
END FUNCTION mux;

subprogram__

END PACKAGE BODY BasicUtilities;

= Package Declaration and Body Syntax

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

package
declarative__
part

package
body
declarative__
part

uonelejoap abeyoed

Apoq abeyoed

Yo

A Package of Components

March 2019

LIBRARY utilities;
USE utilities.BasicUtilities.ALL;
ENTITY aludfunction IS
PORT (ai, bi : IN BIT VECTOR;
mode : IN BIT VECTOR (1 DOWNTO O0) ;
aluout : OUT BIT VECTOR) ;

END ENTITY ;

A Design Unit Compiled in our GenericParts Library (continued)

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

1

A Package of Components

ARCHITECTURE customizable OF aludfunction IS
CONSTANT size : INTEGER := ai'LENGTH;
BEGIN
PROCESS (ai, bi, mode) BEGIN
CASE BIT_VECTOR (mode) IS

WHEN "00" =

aluout <= bin(int(ai) + int(bi), size) ;
WHEN "01" =

aluout <= bin(int(ai) - int(bi), size) ;
WHEN "10" =

aluout <= ai AND bi;

WHEN "11" =>
aluout <= ai OR bi;
WHEN OTHERS =>
aluout <= bin (0, size) ;
END CASE;
END PROCESS
END ARCHITECTURE customizable;

= A Design Unit Compiled in our GenericParts Library

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

A Package of Components

LIBRARY utilities;
USE utilities.BasicUtilities.ALL;
ENTITY dregister IS
PORT (rst, clk : IN BIT; regin : IN BIT VECTOR;
regout : OUT BIT VECTOR) ;
END ENTITY ;

ARCHITECTURE synchronous OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;
BEGIN
reg: PROCESS (clk) BEGIN
IF (clk = 'l') THEN
IF rst = 'l' THEN regout <= bin (0, size) ;
ELSE regout <= regin;
END IF;
END IF;

END PROCESS reg;
END ARCHITECTURE synchronous;

= D-Register Compiled in GenericParts

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

A Package of Components

March 2019

PACKAGE GenericParts IS

COMPONENT dec n PORT
(bin in : IN BIT VECTOR; en : IN BIT;
ded ou : OUT BIT VECTOR) ;

END COMPONENT ;

COMPONENT alu n PORT
(ai, bi : IN BIT VECTOR;
mode : IN BIT VECTOR (1 DOWNTO O0) ;
aluout : OUT BIT VECTOR) ;

END COMPONENT ;

COMPONENT mux n PORT
(ins : IN BIT VECTOR;
s : IN BIT VECTOR; w : OUT BIT)

END COMPONENT ;

COMPONENT ssd f PORT
(bcd : IN BIT VECTOR (3 DOWNTO O0) ;
display : OUT BIT VECTOR (1 TO 7)) ;

END COMPONENT ;

COMPONENT dreg n PORT
(rst, clk : IN BIT; regin : IN BIT VECTOR;
regout : OUT BIT VECTOR) ;

END COMPONENT ;

END PACKAGE GenericParts;

VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Y4

A Package of Components

LTBRARY utilities;

USE utilities.BasicUtilities.ALL;
LIBRARY components;

USE components.GenericParts.ALL;
USE components.ALL;

ENTITY alu n tester IS END ENTITY;

ARCHITECTURE timed OF alu_p_tester IS

SIGNAL 1li,ri,ao : BIT VECTOR (7 DOWNTO O0)
FOR UUT1 : alu_n USE ENTITY
components.alud4function (customizable) ;
BEGIN
UUT1: alu n PORT MAP (li, ri, m, ao);
consecutive data (m, 123 NS, 13);
consecutive data (l1i, 223 NS, 9);
consecutive data (ri, 257 NS, 9);
END ARCHITECTURE timed;

SIGNAL m : BIT VECTOR (1 DOWNTO 0) := "00";
;= "00000100" ;

—— Line
—— Line
—— Line
—— Line
—— Line

a s Wb B

= Using Components and their Declarations

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Process Statements

Sequential
Statements
|
| | |
Process VHDL V,HDL
ILibrary
Statements Subprograms
Structures
Sequential
Wait
Statements

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A

If Statement

—— condition
THEN

w <= a AFTER 1.4 NS; signal_ sequence_of

assignment statements

ELSE

W <= b AFTER 1.5 NS; — Signal_ sequence_of
' assignment statements

END IF;

= Simple if Statement Syntax
VHDL: Modular Design and

March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Juswajels Ji

¢y

Loop Statement

FOR
i ~1©0no iteration_

~ scheme
LOOP

variable
—— assignment_

. FOR j IN data'REVERSE RANGE roop . Statement

garry = T1';

sum := data (j) XOR carry;

carry := data (j) AND carry; loop_
statement
data (j) := sum;
END LOOP;
signal_
target <= TRANSPORT data AFTER ti * 1i; — assignment

exp LOOP; __statement

"= Loop Statement with a FOR Iteration Scheme

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

sequence _
of
statements

o
®]
o
)
[
Q
—
(0]
3
)
-]
~

¢y

Loop Statement

Long runing : LOOP

IF x = 25 THEN

END IF;

END LOOP long runing;

= Partial Code for Demonstrating Exiting from a Potentially Infinite LLoop

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Loop Statement

March 2019

loop 1 : FOR i IN 5 TO 25 LOOP
;eéuéntial_statement_l;
;eéuéntial_statement_2;
I.Loép;Z : WHILE j <= 90 LOOP

sequential statement 3;
sequential statement 4;

sequential statement 5;
sequential statement 6;

END LOOP loop 2;

END LOOP loop 1;END LOOP long runing;

Partial Code for Demonstrating Conditional Next Statements in a L.oop

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

¢0

Case Statement

CASE
BIT VECTOR (mode) expression
IS
WHEN
oo™ case_

=> statement__

alternative
aluout bin(int (ai) +

3 sequence_of _
int(bi), size); statements

case_statement_alternative

"01"

\AJ 1 O \AJ
case_statement_alternative

\AJ l l \AJ
case_statement_alternative

case_statement_alternative

aluout bin (0, size) ;
END CASE;

= Syntax Details of Case Statement

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

JUsWwo)e)S osed

¢

Assertion Statement

- general format :

ASSERT assertion_condition

REPORT "reporting message"
SEVERITY severity level;

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

1A%

Asse

March 2019

-tion Statement

ARCHITECTURE sync timed OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;
BEGIN
reg: PROCESS (clk)
VARIABLE last edge, duration : TIME := 0 NS;
BEGIN
duration := NOW - last edge;
last edge := NOW;
ASSERTENOTEN(AUTEaEH
REPORT.
IF (clk = 'l') THEN
IF rst = 'l' THEN regout <= bin (0, size) ;
ELSE regout <= regin;
END IF;
END IF';

END PROCESS reg;
END ARCHITECTURE sync timed;

= Architecture for Dregister Using Sequential ASSERT

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

¢A

" The focus of this chapter was on description of hardware using sequential
statements

= A sequential statement offers a convenient way of describing behavior of a
hardware component.

= VHDL bodies for inclusion of sequential statements are
"process statements
=subprograms.

" Following subjects were discussed in this chapter
=Details of these constructs and various forms of their utilizations
=VVHDL library structures and packages

* how packages can be used for inclusion of subprograms and component
declarations was also showed.
VHDL: Modular Design and

March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

£9

Slides developed by:
Nadereh Hatami

VHDL: Modular Design and
March 2019 Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

