
March 2019 1

Chapter 5

Sequential Constructs for

RT Level Descriptions

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Sequential Constructs for
RT Level Descriptions

5.1 Process Statement

5.1.1 Declarative Part of a Process

5.1.2 Statement Part of a Process

5.1.3 Process Sensitivity List

5.1.4 Postponed Processes

5.1.5 Passive Processes

5.2 Sequential Wait Statements

5.3 VHDL Subprograms

5.3.1 Function Definition

5.3.2 Procedure Definition

5.3.3 Language Aspects of Subprograms

5.3.4 Nesting Subprograms

March 2019 2
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Sequential Constructs for
RT Level Descriptions
5.4 VHDL Library Structure

5.4.1 Creating Libraries

5.4.2 Using Libraries

5.5 Packaging Utilities and Components

5.5.1 A Package of Utilities

5.5.2 A Package of Components

5.6 Sequential Statements

5.6.1 If Statement

5.6.2 Loop Statement

5.6.3 Case Statement

5.6.4 Assertion Statement

5.7 Summary

March 2019 3
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Sequential Statements

March 2019 4

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 5

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 6

 A Process Statement Block Diagram

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Statement Part of a Process

March 2019 7

 A Process Runs in Zero Time, Repeats Forever, Unless Suspended

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Statement Part of a Process

March 2019 8

 Zero Distance Signal Assignments

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ARCHITECTURE sequentiality_demo OF partial_process IS

BEGIN

PROCESS

BEGIN

...

x <= a;

y <= b;

...

END PROCESS;

END sequentiality_demo;

Statement Part of a Process

March 2019 9

 Partial Code for Demonstrating Delay in Assignment of Values to Signals

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ARCHITECTURE data_availability_demo OF partial_process

IS

SIGNAL x : BIT :=’0’;

BEGIN

PROCESS BEGIN

...

x <= '1';

IF x = '1' THEN

Perform_action_1

ELSE

Perform_action_2

END IF;

...

END PROCESS;

END data_availability_demo;

Process Sensitivity List

March 2019 10

ENTITY multiplexer IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE processing OF multiplexer IS

BEGIN

com: PROCESS (a, b, s) BEGIN

IF s='0' THEN w <= a AFTER 1.4 NS;

ELSE w <= b AFTER 1.5 NS;

END IF;

END PROCESS com;

END ARCHITECTURE processing;

 Multiplexer Described Using a Process with Sensitivity List

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Sensitivity List

March 2019 11

ENTITY flipflop IS

PORT (reset, din, clk : IN BIT; qout : OUT BIT);

END ENTITY;

--

ARCHITECTURE synch_process OF flipflop IS BEGIN

reg: PROCESS (clk) BEGIN

IF (clk = '1') THEN

IF reset = '1' THEN qout <= '0';

ELSE qout <= din;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE synch_process;

 flipflop Using Process with Sensitivity List

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Sensitivity List

March 2019 12

 Syntax of Process with Sensitivity List

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Sensitivity List

March 2019 13

ARCHITECTURE asynch_process OF flipflop IS

BEGIN

reg: PROCESS (clk, reset) BEGIN

IF reset = '1' THEN

qout <= '0' AFTER 1.2 NS;

ELSIF (clk = '1' AND clk'EVENT) THEN

qout <= din AFTER 1.3 NS;

END IF;

END PROCESS reg;

END ARCHITECTURE asynch_process;

 Process Statement Implementing Asynchronous Control

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Postponed Processes

March 2019 14

 Activation of a Postponed Process List

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Passive Processes

March 2019 15

ENTITY flipflop IS

PORT (reset, din, clk : IN BIT; qout : OUT BIT);

BEGIN

timing: PROCESS (clk, reset, din)

VARIABLE t_clk1, t_clk0 : TIME := 0 NS;

VARIABLE t_clkon, t_clkoff : TIME := 0 NS;

BEGIN

IF clk'EVENT THEN

IF clk = '1' THEN --rising edge

t_clk1 := NOW;

t_clkoff := t_clk1 - t_clk0;

ELSE --faling edge

t_clk0 := NOW;

t_clkon := t_clk0 - t_clk1;

END IF;

END IF;

IF t_clkon /= t_clkoff THEN

REPORT "Not 50% duty cycle: On:"

& TIME'IMAGE(t_clkon) & "Off:"

& TIME'IMAGE(t_clkoff);

END IF;

IF clk = '1' AND din'EVENT THEN

REPORT "The din input changed while clk was '1'";

END IF;

END PROCESS timing;

END ENTITY;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 16

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Sequential Wait Statements

March 2019 17
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

WAIT FOR waiting_time;

WAIT ON waiting_sensitivity_list;

WAIT UNTIL waiting_condition;

WAIT FOR 0 any_time_unit;

WAIT;

Sequential Wait Statements

March 2019 18

ARCHITECTURE process_wait OF multiplexer IS

BEGIN

com: PROCESS

BEGIN

IF s='0' THEN

w <= a AFTER 1.4 NS;

ELSE

w <= b AFTER 1.5 NS;

END IF;

WAIT ON a, b, s;

END PROCESS com;

END ARCHITECTURE process_wait;

 Process with WAIT

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Sequential Wait Statements

March 2019 19

ARCHITECTURE synch_waituntil OF flipflop IS

BEGIN

reg: PROCESS

BEGIN

IF reset = '1' THEN

qout <= '0' AFTER 1.2 NS;

ELSE

qout <= din AFTER 1.3 NS;

END IF;

WAIT FOR 1.5 NS;

WAIT UNTIL clk = '1';

END PROCESS reg;

END ARCHITECTURE synch_waituntil;

 Multiple WAIT Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 20

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Function Definition

March 2019 21

FUNCTION mux

(databits : BIT_VECTOR; sel : BIT_VECTOR)

RETURN BIT IS

VARIABLE selint : INTEGER := 0;

BEGIN

FOR i IN sel'LENGTH - 1 DOWNTO 0 LOOP

IF sel (i) = '1' THEN

selint := selint + 2**i;

END IF;

END LOOP;

RETURN databits (selint);

 A Simple Function Definition

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Function Definition

March 2019 22

 Function Syntax Details

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Function Definition

March 2019 23

ARCHITECTURE functional OF multiplexer IS

FUNCTION mux (databits : BIT_VECTOR; . . .

.

.

.

END FUNCTION mux;

SIGNAL sel : BIT_VECTOR (0 DOWNTO 0);

BEGIN

sel(0) <= s;

w <= mux ((a,b), sel) AFTER 8 NS;

END ARCHITECTURE functional;

 Calling a Function

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Procedure Definition

March 2019 24

PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER)

IS

VARIABLE data : BIT_VECTOR (target'RANGE);

VARIABLE sum, carry : BIT;

BEGIN

FOR i IN 1 TO n LOOP

carry := '1';

FOR j IN data'REVERSE_RANGE LOOP

sum := data (j) XOR carry;

carry := data (j) AND carry;

data (j) := sum;

END LOOP;

target <= TRANSPORT data AFTER ti * i;

END LOOP;

END PROCEDURE consecutive_data;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Concurrent Procedure Calls

March 2019 25
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ARCHITECTURE procedural OF multiplexer8_tester IS

PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER)

IS .

.

END PROCEDURE consecutive_data;

SIGNAL a, b, w2 : BIT_VECTOR (7 DOWNTO 0);

SIGNAL s : BIT;

SIGNAL sel : BIT_VECTOR (0 TO 0);

BEGIN

UUT2: ENTITY WORK.multiplexer8 (direct)

PORT MAP (a, b, s, w2);

consecutive_data (a, 123 NS, 6);

consecutive_data (b, 79 NS, 6);

consecutive_data (sel, 119 NS, 8);

s <= sel(0);

END ARCHITECTURE procedural;

Procedure Definition

March 2019 26

PROCEDURE onehot_data

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER)

IS

VARIABLE data : BIT_VECTOR (target'RANGE);

VARIABLE i : INTEGER := 0;

BEGIN

data (0) := '1';

WHILE i < n LOOP

data := data ROR 1;

target <= TRANSPORT data AFTER ti * i;

i := i + 1;

END LOOP;

END PROCEDURE onehot_data;

 Using While Loop

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Language Aspects of Subprograms

March 2019 27

 Details of a Subprogram Body

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Nesting Subprograms

March 2019 28

FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0;

BEGIN

FOR i IN invec'LENGTH - 1 DOWNTO 0 LOOP

IF invec (i) = '1' THEN

tmp := tmp + 2**i;

END IF;

END LOOP;

RETURN tmp;

END FUNCTION int;

FUNCTION mux (databits : BIT_VECTOR; sel : BIT_VECTOR)

RETURN BIT IS

BEGIN

RETURN databits (int(sel));

END FUNCTION mux;

 Using a Function in Another

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Nesting Subprograms

March 2019 29

PROCEDURE inc (VARIABLE invec : INOUT BIT_VECTOR) IS

VARIABLE sum, carry : BIT;

BEGIN

carry := '1';

FOR j IN invec'REVERSE_RANGE LOOP

sum := invec (j) XOR carry;

carry := invec (j) AND carry;

invec (j) := sum;

END LOOP;

END PROCEDURE inc;

--

PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER) IS

VARIABLE data : BIT_VECTOR (target'RANGE);

BEGIN

FOR i IN 1 TO n LOOP

inc (data);

target <= TRANSPORT data AFTER ti * i;

END LOOP;

END PROCEDURE consecutive_data;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Nesting Subprograms

March 2019 30

 Using int Function

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR IS

VARIABLE tmp : BIT_VECTOR(0 TO 2**bin'LENGTH - 1);

BEGIN

tmp := (OTHERS => '0');

tmp (int(bin)) := '1';

RETURN tmp;

END FUNCTION dcd;

Nesting Subprograms

March 2019 31

ENTITY decoder IS

PORT (bin_in : IN BIT_VECTOR; en : IN BIT;

dcd_ou : OUT BIT_VECTOR);

END ENTITY decoder;

--

ARCHITECTURE functional OF decoder IS

BEGIN

dcd_ou <= dcd (bin_in) WHEN en = '1'

ELSE (OTHERS => '0');

END ARCHITECTURE functional;

 Using dcd Function in a Concurrent Statement

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 32

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Utilities

March 2019 33

 An Example Package Declaration

PACKAGE BasicUtilities IS

FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER;

FUNCTION mux (databits : BIT_VECTOR;

sel : BIT_VECTOR) RETURN BIT;

FUNCTION bin (inint, size : INTEGER)

RETURN BIT_VECTOR;

FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR;

PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER);

END PACKAGE BasicUtilities;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Subprogram Definition in Package Body

March 2019 34

PACKAGE BODY BasicUtilities IS

FUNCTION int : see Figure 4.37

FUNCTION mux : see Figure 4.31

FUNCTION bin (inint, size : INTEGER) RETURN BIT_VECTOR IS

VARIABLE tmpi : INTEGER := inint;

VARIABLE tmpb : BIT_VECTOR (size - 1 DOWNTO 0);

BEGIN

tmpb := (OTHERS => '0');

FOR i IN 0 TO size - 1 LOOP

IF ((tmpi MOD 2) = 1) THEN

tmpb(i) := '1';

END IF;

tmpi := tmpi / 2;

END LOOP;

RETURN tmpb;

END FUNCTION bin;

-- PROCEDURE inc: see Figure 5.21

-- PROCEDURE consecutive_data: see Figure 5.21

END PACKAGE BODY BasicUtilities;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Utilities

March 2019 35

 Package Declaration and Body Syntax

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Components

March 2019 36

LIBRARY utilities;

USE utilities.BasicUtilities.ALL;

ENTITY alu4function IS

PORT (ai, bi : IN BIT_VECTOR;

mode : IN BIT_VECTOR (1 DOWNTO 0);

aluout : OUT BIT_VECTOR);

END ENTITY;

 A Design Unit Compiled in our GenericParts Library (continued)

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Components

March 2019 37

ARCHITECTURE customizable OF alu4function IS

CONSTANT size : INTEGER := ai'LENGTH;

BEGIN

PROCESS (ai, bi, mode) BEGIN

CASE BIT_VECTOR (mode) IS

WHEN "00" =>

aluout <= bin(int(ai) + int(bi), size);

WHEN "01" =>

aluout <= bin(int(ai) - int(bi), size);

WHEN "10" =>

aluout <= ai AND bi;

WHEN "11" =>

aluout <= ai OR bi;

WHEN OTHERS =>

aluout <= bin(0, size);

END CASE;

END PROCESS;

END ARCHITECTURE customizable;

 A Design Unit Compiled in our GenericParts Library

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Components

March 2019 38

LIBRARY utilities;

USE utilities.BasicUtilities.ALL;

ENTITY dregister IS

PORT (rst, clk : IN BIT; regin : IN BIT_VECTOR;

regout : OUT BIT_VECTOR);

END ENTITY;

--

ARCHITECTURE synchronous OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;

BEGIN

reg: PROCESS (clk) BEGIN

IF (clk = '1') THEN

IF rst = '1' THEN regout <= bin (0, size);

ELSE regout <= regin;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE synchronous;

 D-Register Compiled in GenericParts
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

A Package of Components

March 2019 39

PACKAGE GenericParts IS

COMPONENT dec_n PORT

(bin_in : IN BIT_VECTOR; en : IN BIT;

dcd_ou : OUT BIT_VECTOR);

END COMPONENT;

COMPONENT alu_n PORT

(ai, bi : IN BIT_VECTOR;

mode : IN BIT_VECTOR (1 DOWNTO 0);

aluout : OUT BIT_VECTOR);

END COMPONENT;

COMPONENT mux_n PORT

(ins : IN BIT_VECTOR;

s : IN BIT_VECTOR; w : OUT BIT);

END COMPONENT;

COMPONENT ssd_f PORT

(bcd : IN BIT_VECTOR (3 DOWNTO 0);

display : OUT BIT_VECTOR (1 TO 7));

END COMPONENT;

COMPONENT dreg_n PORT

(rst, clk : IN BIT; regin : IN BIT_VECTOR;

regout : OUT BIT_VECTOR);

END COMPONENT;

END PACKAGE GenericParts;

VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

A Package of Components

March 2019 40

LIBRARY utilities; -- Line 1

USE utilities.BasicUtilities.ALL; -- Line 2

LIBRARY components; -- Line 3

USE components.GenericParts.ALL; -- Line 4

USE components.ALL; -- Line 5

ENTITY alu_n_tester IS END ENTITY;

--

ARCHITECTURE timed OF alu_n_tester IS

SIGNAL m : BIT_VECTOR (1 DOWNTO 0) := "00";

SIGNAL li,ri,ao : BIT_VECTOR (7 DOWNTO 0) := "00000100";

FOR UUT1 : alu_n USE ENTITY

components.alu4function (customizable);

BEGIN

UUT1: alu_n PORT MAP (li, ri, m, ao);

consecutive_data (m, 123 NS, 13);

consecutive_data (li, 223 NS, 9);

consecutive_data (ri, 257 NS, 9);

END ARCHITECTURE timed;

 Using Components and their Declarations
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Process Statements

March 2019 41

Process

Statements

Sequential

Statements

Sequential

Wait

Statements

VHDL

Subprograms

VHDL

Library

Structures

Sequential

Statements

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

If Statement

March 2019 42

 Simple if Statement Syntax

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Loop Statement

March 2019 43

 Loop Statement with a FOR Iteration Scheme

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Loop Statement

March 2019 44

 Partial Code for Demonstrating Exiting from a Potentially Infinite Loop

Long_runing : LOOP

.

.

.

IF x = 25 THEN

EXIT;

END IF;

.

.

.

END LOOP long_runing;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Loop Statement

March 2019 45

 Partial Code for Demonstrating Conditional Next Statements in a Loop

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

loop_1 : FOR i IN 5 TO 25 LOOP

. . .

sequential_statement_1;

. . .

sequential_statement_2;

. . .

loop_2 : WHILE j <= 90 LOOP

. . .

sequential_statement_3;

sequential_statement_4;

. . .

NEXT loop_1 WHEN condition_1;

. . .

sequential_statement_5;

sequential_statement_6;

. . .

END LOOP loop_2;

. . .

END LOOP loop_1;END LOOP long_runing;

Case Statement

March 2019 46

 Syntax Details of Case Statement

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Assertion Statement

March 2019 47

 general format :

ASSERT assertion_condition

REPORT "reporting_message"

SEVERITY severity_level;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Assertion Statement

March 2019 48

 Architecture for Dregister Using Sequential ASSERT
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ARCHITECTURE sync_timed OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;

BEGIN

reg: PROCESS (clk)

VARIABLE last_edge, duration : TIME := 0 NS;

BEGIN

duration := NOW - last_edge;

last_edge := NOW;

ASSERT NOT (duration < 3 NS)

REPORT "Clock Width Too Short"

SEVERITY NOTE;

IF (clk = '1') THEN

IF rst = '1' THEN regout <= bin (0, size);

ELSE regout <= regin;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE sync_timed;

Summary
 The focus of this chapter was on description of hardware using sequential

statements

 A sequential statement offers a convenient way of describing behavior of a
hardware component.

 VHDL bodies for inclusion of sequential statements are
process statements

subprograms.

 Following subjects were discussed in this chapter
Details of these constructs and various forms of their utilizations

VHDL library structures and packages

 how packages can be used for inclusion of subprograms and component
declarations was also showed.

March 2019 49
VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Acknowledgment

Slides developed by:

Nadereh Hatami

March 2019 50

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

