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 A Process Statement Block Diagram
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 A Process Runs in Zero Time, Repeats Forever, Unless Suspended

VHDL: Modular Design and

Synthesis of  Cores and Systems

Copyright Z. Navabi, 2007



Statement Part of a Process

March 2019 8

 Zero Distance Signal Assignments
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ARCHITECTURE sequentiality_demo OF partial_process IS

BEGIN

PROCESS

BEGIN

...

x <= a;

y <= b;

...

END PROCESS;

END sequentiality_demo;
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 Partial Code for Demonstrating Delay in Assignment of  Values to Signals
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ARCHITECTURE data_availability_demo OF partial_process

IS

SIGNAL x : BIT :=’0’;

BEGIN

PROCESS BEGIN

...

x <= '1';

IF x = '1' THEN

Perform_action_1

ELSE

Perform_action_2

END IF;

...

END PROCESS;

END data_availability_demo;
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ENTITY multiplexer IS 

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE processing OF multiplexer IS 

BEGIN

com: PROCESS (a, b, s) BEGIN

IF s='0' THEN w <= a AFTER 1.4 NS;

ELSE w <= b AFTER 1.5 NS;

END IF;

END PROCESS com;

END ARCHITECTURE processing;

 Multiplexer Described Using a Process with Sensitivity List
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ENTITY flipflop IS 

PORT (reset, din, clk : IN BIT; qout : OUT BIT);

END ENTITY;

--

ARCHITECTURE synch_process OF flipflop IS BEGIN

reg: PROCESS (clk) BEGIN

IF (clk = '1') THEN

IF reset = '1' THEN qout <= '0';

ELSE qout <= din;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE synch_process;

 flipflop Using Process with Sensitivity List
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 Syntax of  Process with Sensitivity List
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ARCHITECTURE asynch_process OF flipflop IS

BEGIN

reg: PROCESS (clk, reset) BEGIN

IF reset = '1' THEN 

qout <= '0' AFTER 1.2 NS;

ELSIF (clk = '1' AND clk'EVENT) THEN

qout <= din AFTER 1.3 NS;

END IF;

END PROCESS reg;

END ARCHITECTURE asynch_process;

 Process Statement Implementing Asynchronous Control
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 Activation of  a Postponed Process List
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ENTITY flipflop IS 

PORT (reset, din, clk : IN BIT; qout : OUT BIT);

BEGIN

timing: PROCESS (clk, reset, din) 

VARIABLE t_clk1, t_clk0 : TIME := 0 NS;

VARIABLE t_clkon, t_clkoff : TIME := 0 NS;

BEGIN

IF clk'EVENT THEN

IF clk = '1' THEN --rising edge

t_clk1 := NOW;

t_clkoff := t_clk1 - t_clk0;

ELSE              --faling edge 

t_clk0 := NOW;

t_clkon := t_clk0 - t_clk1;

END IF;

END IF;

IF t_clkon /= t_clkoff THEN

REPORT "Not 50% duty cycle: On:" 

& TIME'IMAGE(t_clkon) & "Off:" 

& TIME'IMAGE(t_clkoff);

END IF;

IF clk = '1' AND din'EVENT THEN 

REPORT "The din input changed while clk was '1'";

END IF;

END PROCESS timing;

END ENTITY;
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WAIT FOR waiting_time;

WAIT ON waiting_sensitivity_list;

WAIT UNTIL waiting_condition;

WAIT FOR 0 any_time_unit;

WAIT;
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ARCHITECTURE process_wait OF multiplexer IS

BEGIN

com: PROCESS 

BEGIN

IF s='0' THEN 

w <= a AFTER 1.4 NS;

ELSE 

w <= b AFTER 1.5 NS;

END IF;

WAIT ON a, b, s;

END PROCESS com;

END ARCHITECTURE process_wait;

 Process with WAIT
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ARCHITECTURE synch_waituntil OF flipflop IS

BEGIN

reg: PROCESS 

BEGIN

IF reset = '1' THEN 

qout <= '0' AFTER 1.2 NS;

ELSE 

qout <= din AFTER 1.3 NS;

END IF;

WAIT FOR 1.5 NS;

WAIT UNTIL clk = '1';

END PROCESS reg;

END ARCHITECTURE synch_waituntil;

 Multiple WAIT Statements
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FUNCTION mux

(databits : BIT_VECTOR; sel : BIT_VECTOR)  

RETURN BIT IS

VARIABLE selint : INTEGER := 0; 

BEGIN

FOR i IN sel'LENGTH - 1 DOWNTO 0 LOOP

IF sel (i) = '1' THEN 

selint := selint + 2**i;

END IF;

END LOOP;

RETURN databits (selint);

 A Simple Function Definition
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 Function Syntax Details
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ARCHITECTURE functional OF multiplexer IS

FUNCTION mux (databits : BIT_VECTOR; . . .

.

.

.

END FUNCTION mux;

SIGNAL sel : BIT_VECTOR (0 DOWNTO 0);

BEGIN

sel(0) <= s;

w <= mux ((a,b), sel) AFTER 8 NS;

END ARCHITECTURE functional;

 Calling a Function
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PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR; 

CONSTANT ti : TIME; CONSTANT n : INTEGER) 

IS

VARIABLE data : BIT_VECTOR (target'RANGE);

VARIABLE sum, carry : BIT;

BEGIN

FOR i IN 1 TO n LOOP

carry := '1';

FOR j IN data'REVERSE_RANGE LOOP

sum := data (j) XOR carry;

carry := data (j) AND carry;

data (j) := sum;

END LOOP;

target <= TRANSPORT data AFTER ti * i;

END LOOP;

END PROCEDURE consecutive_data; 
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ARCHITECTURE procedural OF multiplexer8_tester IS

PROCEDURE consecutive_data

(SIGNAL target : OUT BIT_VECTOR; 

CONSTANT ti : TIME; CONSTANT n : INTEGER) 

IS .

.

END PROCEDURE consecutive_data;   

SIGNAL a, b, w2 : BIT_VECTOR (7 DOWNTO 0);

SIGNAL s : BIT; 

SIGNAL sel : BIT_VECTOR (0 TO 0);

BEGIN

UUT2: ENTITY WORK.multiplexer8 (direct) 

PORT MAP (a, b, s, w2);

consecutive_data (a, 123 NS, 6);

consecutive_data (b, 79 NS, 6);

consecutive_data (sel, 119 NS, 8);

s <= sel(0);

END ARCHITECTURE procedural;
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PROCEDURE onehot_data 

(SIGNAL target : OUT BIT_VECTOR; 

CONSTANT ti : TIME; CONSTANT n : INTEGER) 

IS

VARIABLE data : BIT_VECTOR (target'RANGE);

VARIABLE i : INTEGER := 0;

BEGIN

data (0) := '1';

WHILE i < n LOOP

data := data ROR 1;

target <= TRANSPORT data AFTER ti * i;

i := i + 1;

END LOOP;

END PROCEDURE onehot_data;

 Using While Loop
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 Details of  a Subprogram Body
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FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER IS

VARIABLE tmp : INTEGER := 0; 

BEGIN

FOR i IN invec'LENGTH - 1 DOWNTO 0 LOOP

IF invec (i) = '1' THEN 

tmp := tmp + 2**i; 

END IF;

END LOOP;

RETURN tmp;

END FUNCTION int;

FUNCTION mux (databits : BIT_VECTOR; sel : BIT_VECTOR)

RETURN BIT IS

BEGIN

RETURN databits (int(sel));

END FUNCTION mux;

 Using a Function in Another
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PROCEDURE inc (VARIABLE invec : INOUT BIT_VECTOR) IS

VARIABLE sum, carry : BIT;

BEGIN

carry := '1';

FOR j IN invec'REVERSE_RANGE LOOP

sum := invec (j) XOR carry;

carry := invec (j) AND carry;

invec (j) := sum;

END LOOP;

END PROCEDURE inc;

--

PROCEDURE consecutive_data 

(SIGNAL target : OUT BIT_VECTOR; 

CONSTANT ti : TIME; CONSTANT n : INTEGER) IS

VARIABLE data : BIT_VECTOR (target'RANGE);

BEGIN

FOR i IN 1 TO n LOOP

inc (data);

target <= TRANSPORT data AFTER ti * i;

END LOOP;

END PROCEDURE consecutive_data;
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 Using int Function
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FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR IS

VARIABLE tmp : BIT_VECTOR(0 TO 2**bin'LENGTH - 1);

BEGIN

tmp := (OTHERS => '0');

tmp (int(bin)) := '1';

RETURN tmp;

END FUNCTION dcd;
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ENTITY decoder IS 

PORT (bin_in : IN BIT_VECTOR; en : IN BIT;

dcd_ou : OUT BIT_VECTOR);

END ENTITY decoder;

--

ARCHITECTURE functional OF decoder IS

BEGIN

dcd_ou <= dcd (bin_in) WHEN en = '1' 

ELSE (OTHERS => '0');

END ARCHITECTURE functional;

 Using dcd Function in a Concurrent Statement
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 An Example Package Declaration

PACKAGE BasicUtilities IS

FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER;

FUNCTION mux (databits : BIT_VECTOR;

sel : BIT_VECTOR) RETURN BIT;

FUNCTION bin (inint, size : INTEGER)

RETURN BIT_VECTOR;

FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR;

PROCEDURE consecutive_data 

(SIGNAL target : OUT BIT_VECTOR;

CONSTANT ti : TIME; CONSTANT n : INTEGER); 

END PACKAGE BasicUtilities;
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PACKAGE BODY BasicUtilities IS

FUNCTION int : see Figure 4.37

FUNCTION mux : see Figure 4.31

FUNCTION bin (inint, size : INTEGER) RETURN BIT_VECTOR IS

VARIABLE tmpi : INTEGER := inint; 

VARIABLE tmpb : BIT_VECTOR (size - 1 DOWNTO 0); 

BEGIN

tmpb := (OTHERS => '0');

FOR i IN 0 TO size - 1 LOOP

IF ((tmpi MOD 2) = 1) THEN 

tmpb(i) := '1'; 

END IF;

tmpi := tmpi / 2;

END LOOP;

RETURN tmpb;

END FUNCTION bin;

-- PROCEDURE inc: see Figure 5.21

-- PROCEDURE consecutive_data: see Figure 5.21

END PACKAGE BODY BasicUtilities;
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 Package Declaration and Body Syntax
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LIBRARY utilities;

USE utilities.BasicUtilities.ALL;

ENTITY alu4function IS 

PORT (ai, bi : IN BIT_VECTOR;

mode : IN BIT_VECTOR (1 DOWNTO 0);

aluout : OUT BIT_VECTOR);

END ENTITY;

 A Design Unit Compiled in our GenericParts Library (continued)
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ARCHITECTURE customizable OF alu4function IS

CONSTANT size : INTEGER := ai'LENGTH;

BEGIN

PROCESS (ai, bi, mode) BEGIN

CASE BIT_VECTOR (mode) IS

WHEN "00" => 

aluout <= bin(int(ai) + int(bi), size);

WHEN "01" => 

aluout <= bin(int(ai) - int(bi), size);

WHEN "10" => 

aluout <= ai AND bi; 

WHEN "11" => 

aluout <= ai OR bi;

WHEN OTHERS => 

aluout <= bin(0, size);

END CASE;

END PROCESS;

END ARCHITECTURE customizable;

 A Design Unit Compiled in our GenericParts Library
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LIBRARY utilities;

USE utilities.BasicUtilities.ALL;

ENTITY dregister IS 

PORT (rst, clk : IN BIT; regin : IN BIT_VECTOR;

regout : OUT BIT_VECTOR);

END ENTITY;

--

ARCHITECTURE synchronous OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;

BEGIN

reg: PROCESS (clk) BEGIN

IF (clk = '1') THEN

IF rst = '1' THEN regout <= bin (0, size);

ELSE regout <= regin;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE synchronous;

 D-Register Compiled in GenericParts
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PACKAGE GenericParts IS

COMPONENT dec_n PORT 

(bin_in : IN BIT_VECTOR; en : IN BIT;

dcd_ou : OUT BIT_VECTOR); 

END COMPONENT;

COMPONENT alu_n PORT 

(ai, bi : IN BIT_VECTOR;

mode : IN BIT_VECTOR (1 DOWNTO 0);

aluout : OUT BIT_VECTOR); 

END COMPONENT;

COMPONENT mux_n PORT 

(ins : IN BIT_VECTOR; 

s : IN BIT_VECTOR; w : OUT BIT);

END COMPONENT;

COMPONENT ssd_f PORT 

(bcd : IN BIT_VECTOR (3 DOWNTO 0); 

display : OUT BIT_VECTOR (1 TO 7));

END COMPONENT;

COMPONENT dreg_n PORT 

(rst, clk : IN BIT; regin : IN BIT_VECTOR;

regout : OUT BIT_VECTOR);

END COMPONENT;

END PACKAGE GenericParts;
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LIBRARY utilities;                                -- Line 1

USE utilities.BasicUtilities.ALL;                 -- Line 2

LIBRARY components;                               -- Line 3

USE components.GenericParts.ALL;                  -- Line 4

USE components.ALL;                               -- Line 5

ENTITY alu_n_tester IS END ENTITY;

--

ARCHITECTURE timed OF alu_n_tester IS

SIGNAL m : BIT_VECTOR (1 DOWNTO 0) := "00"; 

SIGNAL li,ri,ao : BIT_VECTOR (7 DOWNTO 0) := "00000100"; 

FOR UUT1 : alu_n USE ENTITY 

components.alu4function (customizable);

BEGIN

UUT1: alu_n PORT MAP (li, ri, m, ao);

consecutive_data (m, 123 NS, 13);   

consecutive_data (li, 223 NS, 9);   

consecutive_data (ri, 257 NS, 9);   

END ARCHITECTURE timed;

 Using Components and their Declarations
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 Simple if Statement Syntax
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 Loop Statement with a FOR Iteration Scheme
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 Partial Code for Demonstrating Exiting from a Potentially Infinite Loop

Long_runing : LOOP

.

.

.

IF x = 25 THEN 

EXIT;

END IF;

.

. 

.

END LOOP long_runing;
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 Partial Code for Demonstrating Conditional Next Statements in a Loop
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loop_1 : FOR i IN 5 TO 25 LOOP

. . .

sequential_statement_1;

. . .

sequential_statement_2;

. . .

loop_2 : WHILE j <= 90 LOOP

. . .

sequential_statement_3;

sequential_statement_4;

. . .

NEXT loop_1 WHEN condition_1;

. . .

sequential_statement_5;

sequential_statement_6;

. . .

END LOOP loop_2;

. . .

END LOOP loop_1;END LOOP long_runing;
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 Syntax Details of  Case Statement
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 general format  :

ASSERT assertion_condition 

REPORT "reporting_message" 

SEVERITY severity_level;
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 Architecture for Dregister Using Sequential ASSERT
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ARCHITECTURE sync_timed OF dregister IS

CONSTANT size : INTEGER := regin'LENGTH;

BEGIN

reg: PROCESS (clk) 

VARIABLE last_edge, duration : TIME := 0 NS;

BEGIN

duration := NOW - last_edge;

last_edge := NOW;

ASSERT NOT (duration < 3 NS) 

REPORT "Clock Width Too Short"

SEVERITY NOTE;

IF (clk = '1') THEN

IF rst = '1' THEN regout <= bin (0, size);

ELSE regout <= regin;

END IF;

END IF;

END PROCESS reg;

END ARCHITECTURE sync_timed;



Summary
 The focus of this chapter was on description of hardware using sequential 

statements 

 A sequential statement offers a convenient way of describing behavior of a 
hardware component. 

 VHDL bodies for inclusion of sequential statements are 
process statements

subprograms.

 Following subjects were discussed in this chapter
Details of these constructs and various forms of their utilizations

VHDL library structures and packages

 how packages can be used for inclusion of subprograms and component 
declarations was also showed.
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