Chapter 2
RTIL Design with VHDL

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

RTL Design with VHDL

2.1 Basic Structures of VHDL
2.1.1 Entities and Architectures
2.1.2 Entity-Architecture Outline
2.1.3 Entity Ports
2.1.4 Signals and Variables
2.1.5 Logic Value System
2.1.6 Resolutions

2.2 Combinational Circuits
2.2.1 Gate Level Combinational Citcuits
2.2.2 Gate Level Synthesis
2.2.3 Descriptions by Use of Equations
2.2.4 Instantiating Other Modules
2.2.5 Synthesis of Assignment Statements
2.2.6 Descriptions with Sequential Flow

2.2.7 Combinational RUl@@L; Modular Design and

Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

RTL Design with VHDL

2.2.8 Bussing
2.2.9 Synthesizing Procedural Blocks

2.3 Sequential Circuits
2.3.1 Basic Memory Elements at the Gate Level
2.3.2 Memory Elements Using Procedural Statements
2.3.3 Flip-flop Synthesis
2.3.4 Registets, Shifters and Countets
2.3.5 Synthesis of Shifters and Counters
2.3.6 State Machine Coding
2.3.7 State Machine Synthesi
2.3.8 Memoties

2.4 Writing Testbenches

. VHDL: Modular Design and
2.5 SyntheSIS Issues Synthesis of Cores and Systems

February 2019 Copyright Z. Navabi, 2007

RTL Design with VHDL

2.6 VHDL Essential Terminologies
2.6.1 Design
2.6.2 Analysis
2.6.3 Library
2.6.4 Standard Packages
2.6.5 Elaboration
2.6.6 Event Driven Simulation
2.6.7 Concurtency
2.6.8 Concurrent Bodies
2.6.9 Sequentiality
2.6.10° Sequential Bodies
2.6.11 VHDL Objects and Classes
2.6.12 Real Time
2.6.13 Delta Delay
2.6.14 Scheduling
2.6.15 Resolution
2.6.16 Code Formal

2.7 Summary VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Basic Structures of VHDL

Testbench written in VHDL

VHDL

Simulator

= Simulation in VHDL

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Basic Structures of VHDL

“
A f
d o
?Lz*n

Verified Circuit in

VHDL
e ——— Synthesis

| Target Library

sdoyy-dij} pue sajeb Jo isijeu

Timing files (SDF) and other hardware details

Synthesis of a VHDL Design

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Basic Structures of VHDL

Testbench written in VHDL

VHDL
Simulator

H C'
P 20 i
i © = .
iy
P35 i
i E o

(:/Timing files (SDF) and other hardware details\/)

Post-synthesis Simulation in VHDL

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Entities and Architectures

ENTITY entity name IS
input and output ports

END ENTITY entity name;

ARCHITECTURE identifier OF entity name IS
declarative part

BEGIN
statement part

END ARCHITECTURE identifier;

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Entities and Architectures

ARCHITECTURE toplevel OF €0 IS

U1: ENTITY WORK.e1 (arch1) . . ;
U2: ENTITY WORK.e2 (arch2) . . ,;

END toplevel,

ARCHITECTURE arch2 OF e2 IS ARCHITECTURE arch1 OF e1 IS

U21: ENTITY WORK.e3 (arch3) . . : END ARCHITECTURE:

END arch2;

ARCHITECTURE arch3 OF e3 IS

* END ARCHITECTURE;

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

February 2019

Entity-Architecture Outline

ENTITY entityl IS PORT (il, i2 : IN BIT; wl : OUT
BIT) ;
END ENTITY entityl;
ARCHITECTURE simplel OF entityl IS
SIGNAL sl : BIT;
BEGIN
statementl;
statement?2;
statements3;
END ARCHITECTURE simplel;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

February 2019

Entity-Architecture Outline

ENTITY simple IS PORT (il, i2, i3 : IN BIT; wl, w2 : OUT BIT); END ENTITY simple;

ARCHITECTURE simple_la OF simple IS
SIGNAL cl : BIT;
BEGIN
Ul: ENTITY WORK.nor2 PORT MAP (il, i2, cl);
U2: ENTITY WORK.and2 PORT MAP (cl, i3, wl);
U3: ENTITY WORK.xor2 PORT MAP (cl, i3, w2);
END ARCHITECTURE simple la;

ARCHITECTURE simple 1b OF simple IS
BEGIN

wl <= (il NOR i2) AND i3;

w2 <= (il NOR i2) XOR i3;
END ARCHITECTURE simple 1b;

ARCHITECTURE simple_lc OF simple IS
BEGIN
PROCESS (il, i2, i3)
VARIABLE cl : BIT;
BEGIN
cl := il NOR i2;
IF (cl = ‘'1’) THEN wl <= i3; ELSE wl <=
IF (cl = i3) THEN w2 <= ‘0’ ; ELSE w2 <=
END PROCESS;
END ARCHITECTURE simple lc;

® Architecture Definition Alternatives

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007 W

February 2019

Entity Ports

ENTITY aCircuit IS
PORT (a, b : IN BIT;
c : INOUT BIT;
av, bv : IN BIT;VECTOR (7 DOWNTO O) ;

cv : INOUT BIT VECTOR (7 DOWNTO O0) ;

w : OUT BIT;
wv : OUT BIT_VECTOR (7 DOWNTO 0)) ;

END ENTITY aCircuit;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

VY

February 2019

Signals and Variables

ARCHITECTURE two processes OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT VECTOR (7 DOWNTO O) ;
BEGIN
pl: PROCESS (a, b, cwv)
VARIABLE e : BIT;
VARIABLE ev : BIT VECTOR (7 DOWNTO O) ;
BEGIN
—-—- Can see all of aCircuit, plus d, dv, e, and ev.

END PROCESS;
p2: PROCESS (av, bv, c)
VARIABLE £ : BIT;
VARIABLE fv : BIT VECTOR (7 DOWNTO O) ;
BEGIN
—-- Can see all of aCircuit, plus d, dv, £, and fv.

END PROCESS;
END ARCHITECTURE two_processes;

= Signal and Variable Declaration :
VHDL: Modular Design and

Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

VY

Data Part

ARCHITECTURE four assignments OF aCircuit IS

SIGNAL d : BIT;

SIGNAL iv, jv, kv : BIT VECTOR (7 DOWNTO O) ;
BEGIN -

iv <= av AND cwv;

Jjv <= bv AND cv;,

kv <= av NOR bwv;

wv. <= iv XOR jv WHEN ¢ = ‘1’ ELSE iv NAND kv,
END ARCHITECTURE four assignments;

= Using Signals

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

)¢

Data Part

ARCHITECTURE mixed processes assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT VECTOR (7 DOWNTO O0) ;
BEGIN —
pl: PROCESS (a, b, cwv)
VARIABILE e : BIT;
VARIABLE ev : BIT VECTOR (7 DOWNTO O0) ;

BEGIN
IF (a = b) THEN ev := av, ELSE ev := bv;
IF (a = ‘'1’) THEN wv <= av,; ELSE wv <= “10001117;
d <= e;

END PROCESS ;

dv <= awv XOR bv;,
w <= d AND a;
END ARCHITECTURE mixed processes assignments;

February 2019

= Using Signals and Variables

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yo

February 2019

Data Part

ARCHITECTURE indexing slicing OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv. : BIT VECTOR (7 DOWNTO O) ;
BEGIN -
wv (3 DOWNTO 0) <= av (7 DOWNTO 4) AND
cv. (7 DOWNTO 4) ;
w <= cv (4);
cv (7) <= av (0) ;
END ARCHITECTURE indexing slicing;

= Using Indexing and Slicing

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

' 1

February 2019

Logic Value System

Value Representing
U’ Uninitialized
X! Forcing Unknown
'0' Forcing 0
7' Forcing 1
VA High Impedance
"Ww! Weak Unknown
'L Weak 0
'H' Weak 1
! Don’t care

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

ARY%

Resolutions

LIBRARY IEEE;
USE IEEE.std logic 1164 .ALL;
ENTIRY selector IS
PORT (av, bv: IN std logic vector (7 DOWNTO O),
as, bs: IN std logic;
yv: OUT std logic vector (7 DOWNTO O0)) ;
END ENTITY selector;
ARCHITECTURE multiple drivers OF selector IS
BEGIN
yv. <= av. WHEN as = ‘1’ ELSE “ZZZZZZZZ'";
yv. <= bv WHEN bs = ‘1’ ELSE “ZZZZZZZZ";
END ARCHITECTURE multiple drivers;

February 2019

" Multiple Assignments to a Resolved Signal

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

February 2019

Resolutions

U
U
¢
0
1

/.

S & & . c|Cc

S T~ B~
= bl = | Pl @ &

= Partial std_logic resolved Function

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

S =R

N = <o/ XW C|N

14

February 2019

Gate Level Combinational Circuits

ENTITY AND2 IS PORT (il, i2 : IN std_logic; ol: OUT std_logic) ;
END ENTITY AND2;

ARCHITECTURE example OF AND2 IS
BEGIN
ol <= il AND i2 AFTER 3 NS;

END example; gNrITy OR3 IS PORT (il, i2, i3 : IN std logic; ol: OUT std logic);
END ENTITY OR3;

ARCHITECTURE example OF OR3 IS
BEGIN
ol <= il OR i2 OR i3 AFTER 6 NS;

END example; pyprpy BUFIFL IS PORT (il, en : IN std_logic; ol: OUT std logic);
END ENTITY BUFIF1;

ARCHITECTURE example OF BUFIF1 IS
BEGIN
ol <= il AFTER 4 NS WHEN en = ‘l’ ELSE ‘Z’ AFTER 3 NS;

END example;| pNrrTy BUFIFO IS PORT (il, en : IN std logic; ol: OUT std logic);
END ENTITY BUFIFO;

ARCHITECTURE example OF BUFIFO0 IS
BEGIN

ol <= il AFTER 4 NS WHEN en = ‘0’ ELSE ‘Z’ AFTER 3 NS;
END example;

= Basic Primitives Described in VHDL

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

February 2019

Majority Example

= A Majority Circuit

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Y

February 2019

Majority Example

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY maj3 IS
PORT (a, b, ¢ : IN std logic; y : OUT
std logic) ;
END maj3;

ARCHITECTURE gate level OF maj3 IS

SIGNAL iml, im2, im3 : std logic;
BEGIN

ANDa: ENTITY WORK.AND2 PORT MAP (a, b, iml) ;

ANDb: ENTITY WORK.AND2 PORT MAP (b, c, im2) ;

ANDc: ENTITY WORK.AND2 PORT MAP (a, c, im3) ;

ORa : ENTITY WORK.OR3 PORT MAP (iml, im2, im3, y);
END ARCHITECTURE gate level;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yy

February 2019

Multiplexer Example

Multiplexer Using Three-state Gates

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yy

February 2019

Multiplexer Example

ENTITY mux 2tol IS
PORT (a, b, s: IN std logic; y: OUT std logic)
END ENTITY mux 2tol;
ARCHITECTURE gate level OF mux 2tol IS BEGIN
BUFIFla: ENTITY WORK.BUFIF1 (example) PORT MAP (b, s, y);

BUFIFlb: ENTITY WORK.BUFIFO (example) PORT MAP (a, s, y);
END ARCHITECTURE gate level;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Y¢

February 2019

Gate Level Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yo

February 2019

Gate Level Synthesis

RTL (logical) View of Synthesized maj3

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Al

Descriptions by Use of Equations

Boolean NOT AND OR NAND NOR XOR XNOR
Operators

Comparison = /= < <= > >=
Operators

ABS MOD REM * / ah

+
1

Arithmetic
Operators

Concat. &
Operators

= VHDL Operatots
VHDL: Modular Design and

Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Yv

February 2019

XOR Example

ENTITY xor2 IS
PORT (il, i2: IN std logic; ol: OUT std logic) ;
END ENTITY xor2;
ARCHITECTURE expression OF xor2 IS
BEGIN
ol <= il XOR i2 AFTER 3 NS;
END ARCHITECTURE expression;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

February 2019

Full-Adder Example

ENTITY full adder IS

PORT (a, b, cin : IN std logic;

sum, cout : OUT std logic) ;

END ENTITY full_adder;
ARCHITECTURE expression OF full adder IS
BEGIN

sum <= a XOR b XOR cin AFTER 0.3 NS;

cout <= (a AND b) OR (a AND cin) OR (b AND cin) AFTER 0.2
NS;
END ARCHITECTURE expression;

Assign Statement and Boolean

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

Comparator Example

ENTITY comp 4bit IS PORT (

inl, in2 : IN std logic vector (3 DOWNTO O0) ;
eq : OUT std logic) ;

END comp 4bit;

ARCHITECTURE functional OF comp 4bit IS
SIGNAL im : std logic vector (3 DOWNTO O0) ;
FUNCTION nor reduce
(inl: IN std logic vector (3 DOWNTO 0))
RETURN std logic

IS

VARIABLE result : std logic ;
BEGIN

result:= NOT (inl (3) OR inl (2) OR inl (1) OR

inl (0))

RETURN result;
END ;
BEGIN

im <= inl XOR in2;
eq <= nor reduce (im) ;

END functional ; VHDL: Modular Design and
Svynthesis of Cores and Systems

February 2019 Copyright Z. Navabi, 2007

February 2019

Multiplexer Example

ENTITY multiplexer IS

PORT (a, b : IN std logic vector; s : IN
std logic;

w : OUT std logic wvector) ;

END ENTITY; - -
ARCHITECTURE expression OF multiplexer IS
BEGIN

w <= a WHEN s = '0' ELSE b;
END ARCHITECTURE expression;

= An Unconstrained 2-to-1 Mux using Condition Operator

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

AR

Decoder Example

ENTITY dcd2to4 IS
PORT (sel: IN std logic vector (1 DOWNTO O0) ;

END dcd2to4;
ARCHITECTURE structural OF dcd2to4 IS
BEGIN
WITH sel SELECT
y <= "0001" WHEN "00",
"0010" WHEN "O1",
"0100"™ WHEN "10",
"1000" WHEN "11",
"0000" WHEN OTHERS ;
END ARCHITECTURE structural;

y: OUT std logic vector (3 DOWNTO 0)) ;

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

vy

Adder Example

LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;

USE IEEE.std logic unsigned.ALL;
ENTITY adder8 IS PORT (

a : IN std logic vector (7 DOWNTO O0) ;
b : IN std logic vector (7 DOWNTO O0) ;
ci : IN std logic;

s : OUT std logic vector (7 DOWNTO O0) ;
co : OUT std logic) ;

END ENTITY adderS8;
ARCHITECTURE equation OF adder8 IS
SIGNAL mid : std logic vector (8 DOWNTO O0) ;
BEGIN B -
mid <= ('0'&a) + ('0'&b) + ci;
co <= mid (8) ;
s <= mid (7 DOWNTO O0) ;
END equation;

= Adder with Carry-in and Carry-out

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Y

February 2019

ALU Example

ENTITY alu8 IS PORT (

I o : IN std logic vector (7 DOWNTO O) ;

addsub : IN std logic;

gt, zero, co : OUT std logic;

r : OUT std logic vector (7 DOWNTO 0)) ;
END ENTITY alu8;
ARCHITECTURE assigns OF alu8 IS

SIGNAL mid : std logic vector (8 DOWNTO O0) ;
BEGIN

mid <= ('0'& a) + ('0'& b) WHEN addsub = '1'
- ('0'& b) ;

co <= mid (8) ;

r <= mid (7 DOWNTO O0) ;

gt <= 'l' WHEN a > b ELSE '0';

zero <='1l' WHEN mid (7 DOWNTO 0) = "00000000"
END assigns;

ELSE ('0'& a)

ELSE

'0';

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Ye

February 2019

ALU Example Using Adder

ENTITY alu8add IS PORT (

a, b :IN std _logic vector (7 DOWNTO 0);
gt, zero, co : OUT std_logic;
t+ :OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8add;

ARCHITECTURE assigns OF alu8add IS
SIGINAL mid8 : std_logic_vector (7 DOWNTO 0);
SIGINNAL mid1 : std_logic;

BEGIN
AD: ENTITY WORK .adder8 PORT MAP (a, b, '0', mid8, OPEN);

—- AD: ENTITY WORK.adder8§ PORT MAP

— (@=>a,b=>Dhb,ci=>"0s=>mid8);

r <= mid8;

ot <="'1'"WHEN a > b ELSE '0’;

zero <= '1' WHEN mid8 = "00000000" ELSE '0’;
END assigns;

= AU VHDL Code Using Instantiating an Adder
VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

Yo

February 2019

Synthesis of Assignment Statements

adder8:UseAdder

EQUAL
LessThanO

LESS_THAN

ALU _Adder RTL View after Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

1

February 2019

Synthesis of Assignment Statements

ALU _Adder RTL View after Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

v

February 2019

Descriptions with Sequential
Flow

ENTITY maj3 IS
PORT (a, b, ¢ : IN std logic;

\' : OUT std logic) ;
END maj3;
ARCHITECTURE sequential OF maj3 IS
BEGIN
PROCESS (a, b, c)
BEGIN

y <= (a AND b) OR (b AND c) OR (a AND c) ;
END PROCESS;
END ARCHITECTURE sequential;

= Procedural Block Describing a Majority Circuit

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

YA

Majority Example with Delay

ARCHITECTURE sequential delay OF maj3 IS

BEGIN
PROCESS (a, b, c)
BEGIN
y <= (a2 AND b) OR (b AND c¢) OR (a AND c) AFTER 5
NS ;

END PROCESS;
END ARCHITECTURE sequential delay;

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Procedural Multiplexer Example

ENTITY multiplexer IS
PORT (a, b, s : IN BIT; w : OUT BIT) ;
END ENTITY
ARCHITECTURE procedural OF multiplexer IS BEGIN
PROCESS (a, b, s) BEGIN
IFF (s = '0') THEN w <= a;
ELSE w <= b;
END IF;
END PROCESS;
END ARCHITECTURE procedural;

= Sequential Flow Multiplexer

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

February 2019

Procedural ALLU Example

ENTITY alu8 IS

PORT (left i, right i: IN std logic vector (7 DOWNTO O) ;
mode : IN std logic vector (1 DOWNTO O0) ;
OUT std logic_ vector (7 DOWNTO 0)) ;

aluout
END ENTITY ;

ARCHITECTURE procedural OF alu8 IS BEGIN
PROCESS (left i, right i, mode) BEGIN

CASE mode IS

WHEN "00" =
WHEN "O01"

WHEN "10" =
WHEN "11" =

aluout <= left i
aluout <= left i
aluout <= left i
aluout <= left i

+ right i;
- right i;
AND right i;
OR right i;

WHEN OTHERS => aluout <= "XXXXXXXX'"

END CASE ;
END PROCESS ;

END ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

&)

February 2019

Bussing

ENTITY bussing IS
PORT (
businl: IN std logic_ vector (3 DOWNTO O0) ;
busin2: IN std logic vector (3 DOWNTO O0) ;
busin3: IN std logic vector (3 DOWNTO O0) ;
enl: IN std logic;
en2: IN std logic;
en3: IN std logic;
busout: OUT std logic wvector (3 DOWNTO 0)) ;
END bussing;

ARCHITECTURE structural OF bussing IS

BEGIN
busout <= businl WHEN enl = 'l' ELSE (OTHERS =>
busout <= busin2 WHEN en2 = 'l' ELSE (OTHERS =
busout <= busin3 WHEN en3 = 'l' ELSE (OTHERS =>

END structural;

" Three-state Bussing

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

¢y

February 2019

Synthesizing Procedural Blocks

= Synthesis of
Sequential Flow ALU

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

¢y

Basic Memory Elements
at the Gate Level

= L
| [&&=

®

" (Clocked D-latch

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Basic Memory Elements
at the Gate Level

ENTITY latch IS
PORT (d, c: IN std logic;
q, g b : BUFFER std logic) ;
END latch;
ARCHITECTURE structural OF latch IS
SIGNAL s, r : std logic;

BEGIN
S <= c AND d AFTER 6 ns;
r <= ¢ AND (NOT d) AETER 6 ns;
q b <= s NOR g AFTER 4 ns;
q <= r NOR g b AFTER 4 ns;

END structural;

= 37 VHDL Code for a Clocked D-latch

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Basic Memory Elements
at the Gate Level

ENTITY master slave IS
PORT (d, c: IN std logic;
g : OUT std logic) ;
END master slave;
ARCHITECTURE dual OF master slave IS
SIGNAL gm : std logic;

BEGIN
gn <= d WHEN c¢c = '1"';
g <= gm WHEN ¢ = '0';
END dual;

= Master-Slave Flip-Flop

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

Memory Elements Using
Procedural Statements

ENTITY latchl IS
PORT (d, c: IN std logic; g: OUT std logic)
END latchl;
ARCHITECTURE behavioral OF latchl IS
BEGIN
PROCESS (d, c)
BEGIN
IF ¢ = '1l'" THEN
g <= d;
END IF;
END PROCESS ;
END ARCHITECTURE behavioral;

" Procedural LLatch

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

¢y

February 2019

D Flip-Flop

ENTITY DFF1 IS
PORT (d, clk: IN std logic; g : OUT std logic) ;
END DFF1;

ARCHITECTURE behavioral OF DFF1 IS

BEGIN
PROCESS (clk)
BEGIN
IF clk = '"l' AND clk'EVENT THEN
q <= d;
END IF;

END PROCESS ;
END ARCHITECTURE behavioral;

= A Positive-Edge D Flip-Flop

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

EA

February 2019

Synchronous Control

ENTITY DFFlsr IS
PORT (d, clk,
END DFFlsr;

IN std logic; q

ARCHITECTURE behavioral OF DFFlsr IS

BEGIN
PROCESS (clk)
BEGIN

IF clk = '"l' AND clk'EVENT THEN

IE s =

END IF;
END PROCESS ;
END ARCHITECTURE

THEN

THEN

behavioral ;

OUT std logic) ;

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

¢q

Synchronous Control

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

February 2019

Asynchronous Control

ARCHITECTURE asynchronous OF DFFlsr IS

BEGIN
PROCESS (clk, s, r) BEGIN

IF s = 'l' THEN
qg<="'l';

ELSIF r = "l' THEN
g <= '0';

ELSIF clk = 'l' AND clk'EVENT THEN
qg <= d;

END IF;

END PROCESS ;
END ARCHITECTURE asynchronous;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

o)

Asynchronous Control

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

February 2019

Flip-flop Synthesis

DATAD >

Synchronous Flip-Flop Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

REGOUT >

oy

February 2019

Flip-flop Synthesis

ADATA >

DATAD >

Asynchronous Flip-Flop Synthesis
VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

REGOUT >

o¢

February 2019

Flip-flop Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

oo

February 2019

Flip-flop Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

o1

Registers

ENTITY register8 IS

PORT (
IN std logic vector (7 DOWNTO O) ;
IN std logic; clk, s, ¢

OUT std logic vector (7 DOWNTO 0)) ;
END register8;
ARCHITECTURE behavioral OF register8 IS
BEGIN

PROCESS (clk)

BEGIN
IF clk = 'l' AND clk'event THEN
IF s= 'l' THEN
g <= (OTHERS => '1');
ELSIF r = 'l' THEN
g <= (OTHERS => '0') ;
ELSE
q <= d;
END IF;
END IF';

END PROCESS ;
END behawvioral;

February 2019

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

ov

February 2019

Shift-Registers

ENTITY shift reg4 IS

PORT (
d : IN std logic vector (3 DOWNTO O) ;
clk, 1d, rst, 1 r, s in : IN std logic;
q : OUT std logic vector (3 DOWNTO 0)) ;

END shift reg4;
ARCHITECTURE behavioral OF shift reg4 IS
BEGIN
PROCESS (clk)
VARIABLE g t: std logic vector (3 DOWNTO O0) ;
BEGIN
IF rising edge (clk) THEN
IF rst= 'l' THEN

g t := (OTHERS => '0');
ELSIF 1d = 'l' THEN
qg t :=d;
ELSIF 1 r = 'l' THEN
gt := gt (2 DOWNTO 0) & s in ;
ELSE
qt := s in & g t (3 DOWNTO 1) ;
END IF;
END IF;
q <= g t;

END PROCESS;
END behawvioral;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

oA

February 2019

Counters

ENTITY counter4 IS
PORT (reset, clk : IN std logic;

count : OUT std logic vector (3 DOWNTO 0)) ;

END ENTITY;
ARCHITECTURE procedural OF counter4d IS
SIGNAL cnt reg : std logic vector (3 DOWNTO O0) ;
BEGIN
PROCESS (clk)
BEGIN
IF (clk = '"0O" AND clk"EVENT) THEN
IF (reset='"'1l'"') THEN
cnt reg <="0000" AFTER 1.2 NS;
ELSE
cnt reg <= cnt reg + 1 AFTER 1.2 NS;
END IF;
END IF;
END PROCESS;
count <= cnt reg;
END ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

014

Synthesis of Shifters and Counters

= Shift Register Synthesis RTL View

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

State Machine Coding

A Moore Machine
Sequence Detector

States are named: The State in which

s0,sl, s2,s3 the 110 sequence is

detected.

Initial
State

It Takes at least
3 clock periods to
get to the s3 state

= A Moore Sequence Detector

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007 1)

Mootre Machine VHDIL. Code

ENTITY detectorll0 IS
PORT (a, clk, reset

std logic) ;

END ENTITY

ARCHITECTURE procedural OF detectorl1l0 IS
TYPE state IS (SO0, S1, S2, S3);

SIGNAL current : state := SO;
BEGIN
PROCESS (clk) BEGIN
IF (clk = '0' AND clk'EVENT) THEN
IF reset = 'l' THEN current <= SO;
ELSE

CASE current IS
WHEN SO =>

IF a='1l' THEN current <= S1;

ELSE current <= S0; END IF;

IN std logic; w : OUT

WHEN S1 =>
IF a='l' THEN current <= S2;
ELSE current <= S0; END IF;
WHEN S2 =>
IF a='l' THEN current <= S2;
ELSE current <= S3; END IF;
WHEN S3 =>
IF a='1l' THEN current <= S1;
ELSE current <= S0; END IF;
WHEN OTHERS => current <= SO;
END CASE;
END IF;
END IF;
END PROCESS;
w <= 'l' WHEN current = S3 ELSE '0';

ND ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems

February 2019

Copyright Z. Navabi, 2007 1y

February 2019

Pulse Synchronizer

ENTITY synchronizer IS
PORT (clk, adata : IN std logic;
synched : OUT std logic) ;
END ENTITY ;
ARCHITECTURE procedural OF synchronizer IS
TYPE state IS (SO, S1);
SIGNAL current : state;
BEGIN
PROCESS (clk) BEGIN
IF (rising edge (clk)) THEN
IF current = SO0 THEN
IF adata = '0O' THEN
current <= SO;
ELSE
current <= S1;
END IF;
ELSE -- current = S1
current <= SO;
END IF;
END IF;
END PROCESS ; VHDyhmmmmImggnmw
synched <= '1' WHEﬁW%E§%§H£ﬁ%égE2%£§E '0';
END ARCHITECTURE procedural;

1y

February 2019

State Machine Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

¢

February 2019

State Machine Synthesis

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

10

February 2019

Writing Testbenches

ARCHITECTURE

TYPE memory IS
ARRAY (INTEGER RANGE <>) OF

std logic vector (7 DOWNTO O0) ;
SIGNAL mem: memory (0 to 1023) ;
BEGIN
PROCESS (mem)
VARIABLE memv: memory (0 to 15) ;
VARIABLE data: std logic vector (7 DOWNTO O0) ;
VARIABLE short data: std logic vector (3 DOWNTO O0) ;

BEGIN

data := mem(956) ;
short data := mem(931) (6 downto 3);
memv (12) := mem(189) ;
mem (932) <= data ;
mem (321) (5 DOWNTO 2) <= short data;
mem (940) <= "0000" & short data ;

END PROCESS ;

END ARCHITECTURE ; VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

1

February 2019

Writing Testbenches

ENTITY detectorllO_ tester IS END ENTITY;
ARCHITECTURE timed OF detectorll0 tester IS
SIGNAL aa, clock, rst, ww : std logic := '0';
BEGIN
UUT1: ENTITY WORK.detectorllO (procedural)
PORT MAP (aa, clock, rst, ww)
rst <= 'l' AFTER 31 NS, '0O' AFTER 54 NS;

clock <= NOT clock AFTER 7 NS WHEN NOW<=165 NS ELSE '0';

PROCESS BEGIN
WAIT FOR 23 NS; aa <= '1l';
WAIT FOR 21 NS; aa <= '0';
WAIT FOR 19 NS; aa <= '1l';
WAIT FOR 31 NS; aa <= '0';
WAIT;
END PROCESS;
PROCESS (ww) BEGIN
REPORT "Signal w changed to:"& std logic'IMAGE (ww) &
""at " & TIME'IMAGE (NOW)
SEVERITY NOTE ;
END PROCESS ; VHDL: Modular Design and

. Synthesis of Cores and Systems
END ARCHITECTURE timed; Copyright Z. Navabi, 2007

1y

Writing Testbenches

m wave - default

fdetector1 10_tester/clock
/detector110_tester/rst
Jdetector] 10_tester/ww
/detector] D_testen’aa

Cursor 1

" Testbench Waveform Results

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007

February 2019

Summary

= This chapter presented:

= RT level description in the VHDILI HDL language

= examples of synthesizable one-to-one hardware
cotrespondence

= introducesing some VHDL terminologies that are
needed for understanding the linguistics of VHDL

= How testbenches could be developed in VHDL and new
constructs of it in this part

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007

14

