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Basic Structures of VHDL

Testbench written in VHDL

VHDL

Simulator

= Simulation in VHDL
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Basic Structures of VHDL

Testbench written in VHDL
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Entities and Architectures

ENTITY entity name IS
input and output ports

END ENTITY entity name;

ARCHITECTURE identifier OF entity name IS
declarative part

BEGIN
statement part

END ARCHITECTURE identifier;
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Entities and Architectures

ARCHITECTURE toplevel OF €0 IS

U1: ENTITY WORK.e1 (arch1) . . ;
U2: ENTITY WORK.e2 (arch2) . . ,;

END toplevel,

ARCHITECTURE arch2 OF e2 IS ARCHITECTURE arch1 OF e1 IS

U21: ENTITY WORK.e3 (arch3) . . : END ARCHITECTURE:

END arch2;

ARCHITECTURE arch3 OF e3 IS

* END ARCHITECTURE;
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Entity-Architecture Outline

ENTITY entityl IS PORT (il, i2 : IN BIT; wl : OUT
BIT) ;
END ENTITY entityl;
ARCHITECTURE simplel OF entityl IS
SIGNAL sl : BIT;
BEGIN
statementl;
statement?2;
statements3;
END ARCHITECTURE simplel;
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Entity-Architecture Outline

ENTITY simple IS PORT (il, i2, i3 : IN BIT; wl, w2 : OUT BIT); END ENTITY simple;

ARCHITECTURE simple_la OF simple IS
SIGNAL cl : BIT;
BEGIN
Ul: ENTITY WORK.nor2 PORT MAP (il, i2, cl);
U2: ENTITY WORK.and2 PORT MAP (cl, i3, wl);
U3: ENTITY WORK.xor2 PORT MAP (cl, i3, w2);
END ARCHITECTURE simple la;

ARCHITECTURE simple 1b OF simple IS
BEGIN

wl <= (il NOR i2) AND i3;

w2 <= (il NOR i2) XOR i3;
END ARCHITECTURE simple 1b;

ARCHITECTURE simple_lc OF simple IS
BEGIN
PROCESS (il, i2, i3)
VARIABLE cl : BIT;
BEGIN
cl := il NOR i2;
IF (cl = ‘'1’) THEN wl <= i3; ELSE wl <=
IF (cl = i3 ) THEN w2 <= ‘0’ ; ELSE w2 <=
END PROCESS;
END ARCHITECTURE simple lc;

® Architecture Definition Alternatives
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Entity Ports

ENTITY aCircuit IS
PORT (a, b : IN BIT;
c : INOUT BIT;
av, bv : IN BIT;VECTOR (7 DOWNTO O) ;

cv : INOUT BIT VECTOR (7 DOWNTO O0) ;

w : OUT BIT;
wv : OUT BIT_VECTOR (7 DOWNTO 0)) ;

END ENTITY aCircuit;
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Signals and Variables

ARCHITECTURE two processes OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT VECTOR (7 DOWNTO O) ;
BEGIN
pl: PROCESS (a, b, cwv)
VARIABLE e : BIT;
VARIABLE ev : BIT VECTOR (7 DOWNTO O) ;
BEGIN
—-—- Can see all of aCircuit, plus d, dv, e, and ev.

END PROCESS;
p2: PROCESS (av, bv, c)
VARIABLE £ : BIT;
VARIABLE fv : BIT VECTOR (7 DOWNTO O) ;
BEGIN
—-- Can see all of aCircuit, plus d, dv, £, and fv.

END PROCESS;
END ARCHITECTURE two_processes;

= Signal and Variable Declaration :
VHDL: Modular Design and
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Data Part

ARCHITECTURE four assignments OF aCircuit IS

SIGNAL d : BIT;

SIGNAL iv, jv, kv : BIT VECTOR (7 DOWNTO O) ;
BEGIN -

iv <= av AND cwv;

Jjv <= bv AND cv;,

kv <= av NOR bwv;

wv. <= iv XOR jv WHEN ¢ = ‘1’ ELSE iv NAND kv,
END ARCHITECTURE four assignments;

= Using Signals
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Data Part

ARCHITECTURE mixed processes assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT VECTOR (7 DOWNTO O0) ;
BEGIN —
pl: PROCESS (a, b, cwv)
VARIABILE e : BIT;
VARIABLE ev : BIT VECTOR (7 DOWNTO O0) ;

BEGIN
IF (a = b) THEN ev := av, ELSE ev := bv;
IF (a = ‘'1’) THEN wv <= av,; ELSE wv <= “10001117;
d <= e;

END PROCESS ;

dv <= awv XOR bv;,
w <= d AND a;
END ARCHITECTURE mixed processes assignments;

February 2019

= Using Signals and Variables
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Data Part

ARCHITECTURE indexing slicing OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv. : BIT VECTOR (7 DOWNTO O) ;
BEGIN -
wv (3 DOWNTO 0) <= av (7 DOWNTO 4) AND
cv. (7 DOWNTO 4) ;
w <= cv (4);
cv (7) <= av (0) ;
END ARCHITECTURE indexing slicing;

= Using Indexing and Slicing
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Logic Value System

Value Representing
U’ Uninitialized
X! Forcing Unknown
'0' Forcing 0
7' Forcing 1
VA High Impedance
"Ww! Weak Unknown
'L Weak 0
'H' Weak 1
! Don’t care
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Resolutions

LIBRARY IEEE;
USE IEEE.std logic 1164 .ALL;
ENTIRY selector IS
PORT (av, bv: IN std logic vector (7 DOWNTO O),
as, bs: IN std logic;
yv: OUT std logic vector (7 DOWNTO O0)) ;
END ENTITY selector;
ARCHITECTURE multiple drivers OF selector IS
BEGIN
yv. <= av. WHEN as = ‘1’ ELSE “ZZZZZZZZ'";
yv. <= bv WHEN bs = ‘1’ ELSE “ZZZZZZZZ";
END ARCHITECTURE multiple drivers;

February 2019

" Multiple Assignments to a Resolved Signal
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Resolutions
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Gate Level Combinational Circuits

ENTITY AND2 IS PORT (il, i2 : IN std_logic; ol: OUT std_logic) ;
END ENTITY AND2;

ARCHITECTURE example OF AND2 IS
BEGIN
ol <= il AND i2 AFTER 3 NS;

END example; gNrITy OR3 IS PORT (il, i2, i3 : IN std logic; ol: OUT std logic);
END ENTITY OR3;

ARCHITECTURE example OF OR3 IS
BEGIN
ol <= il OR i2 OR i3 AFTER 6 NS;

END example; pyprpy BUFIFL IS PORT (il, en : IN std_logic; ol: OUT std logic);
END ENTITY BUFIF1;

ARCHITECTURE example OF BUFIF1 IS
BEGIN
ol <= il AFTER 4 NS WHEN en = ‘l’ ELSE ‘Z’ AFTER 3 NS;

END example;| pNrrTy BUFIFO IS PORT (il, en : IN std logic; ol: OUT std logic);
END ENTITY BUFIFO;

ARCHITECTURE example OF BUFIFO0 IS
BEGIN

ol <= il AFTER 4 NS WHEN en = ‘0’ ELSE ‘Z’ AFTER 3 NS;
END example;

=  Basic Primitives Described in VHDL
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Majority Example

= A Majority Circuit
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Majority Example

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY maj3 IS
PORT (a, b, ¢ : IN std logic; y : OUT
std logic) ;
END maj3;

ARCHITECTURE gate level OF maj3 IS

SIGNAL iml, im2, im3 : std logic;
BEGIN

ANDa: ENTITY WORK.AND2 PORT MAP (a, b, iml) ;

ANDb: ENTITY WORK.AND2 PORT MAP (b, c, im2) ;

ANDc: ENTITY WORK.AND2 PORT MAP (a, c, im3) ;

ORa : ENTITY WORK.OR3 PORT MAP (iml, im2, im3, y);
END ARCHITECTURE gate level;

VHDL: Modular Design and
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Multiplexer Example

Multiplexer Using Three-state Gates
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Multiplexer Example

ENTITY mux 2tol IS
PORT (a, b, s: IN std logic; y: OUT std logic)
END ENTITY mux 2tol;
ARCHITECTURE gate level OF mux 2tol IS BEGIN
BUFIFla: ENTITY WORK.BUFIF1 (example) PORT MAP (b, s, y);

BUFIFlb: ENTITY WORK.BUFIFO (example) PORT MAP (a, s, y);
END ARCHITECTURE gate level;

VHDL: Modular Design and
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Gate Level Synthesis
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Gate Level Synthesis

RTL (logical) View of Synthesized maj3
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Descriptions by Use of Equations

Boolean NOT AND OR NAND NOR XOR XNOR
Operators

Comparison = /= < <= > >=
Operators

ABS MOD REM * / ah

+
1

Arithmetic
Operators

Concat. &
Operators

= VHDL Operatots
VHDL: Modular Design and
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XOR Example

ENTITY xor2 IS
PORT (il, i2: IN std logic; ol: OUT std logic) ;
END ENTITY xor2;
ARCHITECTURE expression OF xor2 IS
BEGIN
ol <= il XOR i2 AFTER 3 NS;
END ARCHITECTURE expression;

VHDL: Modular Design and
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Full-Adder Example

ENTITY full adder IS

PORT (a, b, cin : IN std logic;

sum, cout : OUT std logic) ;

END ENTITY full_adder;
ARCHITECTURE expression OF full adder IS
BEGIN

sum <= a XOR b XOR cin AFTER 0.3 NS;

cout <= (a AND b) OR (a AND cin) OR (b AND cin) AFTER 0.2
NS;
END ARCHITECTURE expression;

Assign Statement and Boolean

VHDL: Modular Design and
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Comparator Example

ENTITY comp 4bit IS PORT (

inl, in2 : IN std logic vector (3 DOWNTO O0) ;
eq : OUT std logic ) ;

END comp 4bit;

ARCHITECTURE functional OF comp 4bit IS
SIGNAL im : std logic vector (3 DOWNTO O0) ;
FUNCTION nor reduce
(inl: IN std logic vector (3 DOWNTO 0))
RETURN std logic

IS

VARIABLE result : std logic ;
BEGIN

result:= NOT (inl (3) OR inl (2) OR inl (1) OR

inl (0))

RETURN result;
END ;
BEGIN

im <= inl XOR in2;
eq <= nor reduce (im) ;

END functional ; VHDL: Modular Design and
Svynthesis of Cores and Systems

February 2019 Copyright Z. Navabi, 2007



February 2019

Multiplexer Example

ENTITY multiplexer IS

PORT (a, b : IN std logic vector; s : IN
std logic;

w : OUT std logic wvector) ;

END ENTITY; - -
ARCHITECTURE expression OF multiplexer IS
BEGIN

w <= a WHEN s = '0' ELSE b;
END ARCHITECTURE expression;

= An Unconstrained 2-to-1 Mux using Condition Operator
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Decoder Example

ENTITY dcd2to4 IS
PORT (sel: IN std logic vector (1 DOWNTO O0) ;

END dcd2to4;
ARCHITECTURE structural OF dcd2to4 IS
BEGIN
WITH sel SELECT
y <= "0001" WHEN "00",
"0010" WHEN "O1",
"0100"™ WHEN "10",
"1000" WHEN "11",
"0000" WHEN OTHERS ;
END ARCHITECTURE structural;

y: OUT std logic vector (3 DOWNTO 0) ) ;

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007
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Adder Example

LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;

USE IEEE.std logic unsigned.ALL;
ENTITY adder8 IS PORT (

a : IN std logic vector (7 DOWNTO O0) ;
b : IN std logic vector (7 DOWNTO O0) ;
ci : IN std logic;

s : OUT std logic vector (7 DOWNTO O0) ;
co : OUT std logic ) ;

END ENTITY adderS8;
ARCHITECTURE equation OF adder8 IS
SIGNAL mid : std logic vector (8 DOWNTO O0) ;
BEGIN B -
mid <= ('0'&a) + ('0'&b) + ci;
co <= mid (8) ;
s <= mid (7 DOWNTO O0) ;
END equation;

= Adder with Carry-in and Carry-out

VHDL: Modular Design and
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ALU Example

ENTITY alu8 IS PORT (

I o : IN std logic vector (7 DOWNTO O) ;

addsub : IN std logic;

gt, zero, co : OUT std logic;

r : OUT std logic vector (7 DOWNTO 0)) ;
END ENTITY alu8;
ARCHITECTURE assigns OF alu8 IS

SIGNAL mid : std logic vector (8 DOWNTO O0) ;
BEGIN

mid <= ('0'& a) + ('0'& b) WHEN addsub = '1'
- ('0'& b) ;

co <= mid (8) ;

r <= mid (7 DOWNTO O0) ;

gt <= 'l' WHEN a > b ELSE '0';

zero <='1l' WHEN mid (7 DOWNTO 0) = "00000000"
END assigns;

ELSE ('0'& a)

ELSE

'0';

VHDL: Modular Design and
Synthesis of Cores and Systems
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ALU Example Using Adder

ENTITY alu8add IS PORT (

a, b :IN std _logic vector (7 DOWNTO 0);
gt, zero, co : OUT std_logic;
t+ :OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8add;

ARCHITECTURE assigns OF alu8add IS
SIGINAL mid8 : std_logic_vector (7 DOWNTO 0);
SIGINNAL mid1 : std_logic;

BEGIN
AD: ENTITY WORK .adder8 PORT MAP (a, b, '0', mid8, OPEN);

—- AD: ENTITY WORK.adder8§ PORT MAP

— (@=>a,b=>Dhb,ci=>"0s=>mid8);

r <= mid8;

ot <="'1'"WHEN a > b ELSE '0’;

zero <= '1' WHEN mid8 = "00000000" ELSE '0’;
END assigns;

= AU VHDL Code Using Instantiating an Adder
VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007
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Synthesis of Assignment Statements

adder8:UseAdder

EQUAL
LessThanO

LESS_THAN

ALU _Adder RTL View after Synthesis
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Synthesis of Assignment Statements

ALU _Adder RTL View after Synthesis
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Descriptions with Sequential
Flow

ENTITY maj3 IS
PORT (a, b, ¢ : IN std logic;

\' : OUT std logic) ;
END maj3;
ARCHITECTURE sequential OF maj3 IS
BEGIN
PROCESS (a, b, c)
BEGIN

y <= (a AND b) OR (b AND c) OR (a AND c) ;
END PROCESS;
END ARCHITECTURE sequential;

= Procedural Block Describing a Majority Circuit

VHDL: Modular Design and
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Majority Example with Delay

ARCHITECTURE sequential delay OF maj3 IS

BEGIN
PROCESS (a, b, c)
BEGIN
y <= (a2 AND b) OR (b AND c¢) OR (a AND c) AFTER 5
NS ;

END PROCESS;
END ARCHITECTURE sequential delay;

VHDL: Modular Design and
Synthesis of Cores and Systems
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Procedural Multiplexer Example

ENTITY multiplexer IS
PORT (a, b, s : IN BIT; w : OUT BIT) ;
END ENTITY
ARCHITECTURE procedural OF multiplexer IS BEGIN
PROCESS (a, b, s) BEGIN
IFF (s = '0') THEN w <= a;
ELSE w <= b;
END IF;
END PROCESS;
END ARCHITECTURE procedural;

= Sequential Flow Multiplexer

VHDL: Modular Design and
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Procedural ALLU Example

ENTITY alu8 IS

PORT (left i, right i: IN std logic vector (7 DOWNTO O) ;
mode : IN std logic vector (1 DOWNTO O0) ;
OUT std logic_ vector (7 DOWNTO 0)) ;

aluout
END ENTITY ;

ARCHITECTURE procedural OF alu8 IS BEGIN
PROCESS (left i, right i, mode) BEGIN

CASE mode IS

WHEN "00" =
WHEN "O01"

WHEN "10" =
WHEN "11" =

aluout <= left i
aluout <= left i
aluout <= left i
aluout <= left i

+ right i;
- right i;
AND right i;
OR right i;

WHEN OTHERS => aluout <= "XXXXXXXX'"

END CASE ;
END PROCESS ;

END ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems
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Bussing

ENTITY bussing IS
PORT (
businl: IN std logic_ vector (3 DOWNTO O0) ;
busin2: IN std logic vector (3 DOWNTO O0) ;
busin3: IN std logic vector (3 DOWNTO O0) ;
enl: IN std logic;
en2: IN std logic;
en3: IN std logic;
busout: OUT std logic wvector (3 DOWNTO 0) ) ;
END bussing;

ARCHITECTURE structural OF bussing IS

BEGIN
busout <= businl WHEN enl = 'l' ELSE (OTHERS =>
busout <= busin2 WHEN en2 = 'l' ELSE (OTHERS =
busout <= busin3 WHEN en3 = 'l' ELSE (OTHERS =>

END structural;

" Three-state Bussing

VHDL: Modular Design and
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Synthesizing Procedural Blocks

= Synthesis of
Sequential Flow ALU
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Basic Memory Elements
at the Gate Level
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" (Clocked D-latch
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Basic Memory Elements
at the Gate Level

ENTITY latch IS
PORT (d, c: IN std logic;
q, g b : BUFFER std logic) ;
END latch;
ARCHITECTURE structural OF latch IS
SIGNAL s, r : std logic;

BEGIN
S <= c AND d AFTER 6 ns;
r <= ¢ AND (NOT d) AETER 6 ns;
q b <= s NOR g AFTER 4 ns;
q <= r NOR g b AFTER 4 ns;

END structural;

= 37 VHDL Code for a Clocked D-latch
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Basic Memory Elements
at the Gate Level

ENTITY master slave IS
PORT (d, c: IN std logic;
g : OUT std logic) ;
END master slave;
ARCHITECTURE dual OF master slave IS
SIGNAL gm : std logic;

BEGIN
gn <= d WHEN c¢c = '1"';
g <= gm WHEN ¢ = '0';
END dual;

= Master-Slave Flip-Flop

VHDL: Modular Design and
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Memory Elements Using
Procedural Statements

ENTITY latchl IS
PORT (d, c: IN std logic; g: OUT std logic)
END latchl;
ARCHITECTURE behavioral OF latchl IS
BEGIN
PROCESS (d, c)
BEGIN
IF ¢ = '1l'" THEN
g <= d;
END IF;
END PROCESS ;
END ARCHITECTURE behavioral;

" Procedural LLatch

VHDL: Modular Design and
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D Flip-Flop

ENTITY DFF1 IS
PORT (d, clk: IN std logic; g : OUT std logic) ;
END DFF1;

ARCHITECTURE behavioral OF DFF1 IS

BEGIN
PROCESS (clk)
BEGIN
IF clk = '"l' AND clk'EVENT THEN
q <= d;
END IF;

END PROCESS ;
END ARCHITECTURE behavioral;

= A Positive-Edge D Flip-Flop
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Synchronous Control

ENTITY DFFlsr IS
PORT (d, clk,
END DFFlsr;

IN std logic; q

ARCHITECTURE behavioral OF DFFlsr IS

BEGIN
PROCESS (clk)
BEGIN

IF clk = '"l' AND clk'EVENT THEN

IE s =

END IF;
END PROCESS ;
END ARCHITECTURE

THEN

THEN

behavioral ;

OUT std logic) ;

VHDL: Modular Design and

Synthesis of Cores and Systems
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Synchronous Control
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Asynchronous Control

ARCHITECTURE asynchronous OF DFFlsr IS

BEGIN
PROCESS (clk, s, r) BEGIN

IF s = 'l' THEN
qg<="'l';

ELSIF r = "l' THEN
g <= '0';

ELSIF clk = 'l' AND clk'EVENT THEN
qg <= d;

END IF;

END PROCESS ;
END ARCHITECTURE asynchronous;

VHDL: Modular Design and
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Asynchronous Control
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Flip-flop Synthesis

DATAD >

Synchronous Flip-Flop Synthesis
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Flip-flop Synthesis

ADATA >

DATAD >

Asynchronous Flip-Flop Synthesis
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Flip-flop Synthesis
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Flip-flop Synthesis
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Registers

ENTITY register8 IS

PORT (
IN std logic vector (7 DOWNTO O) ;
IN std logic; clk, s, ¢

OUT std logic vector ( 7 DOWNTO 0)) ;
END register8;
ARCHITECTURE behavioral OF register8 IS
BEGIN

PROCESS (clk)

BEGIN
IF clk = 'l' AND clk'event THEN
IF s= 'l' THEN
g <= (OTHERS => '1');
ELSIF r = 'l' THEN
g <= (OTHERS => '0') ;
ELSE
q <= d;
END IF;
END IF';

END PROCESS ;
END behawvioral;

February 2019
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Shift-Registers

ENTITY shift reg4 IS

PORT (
d : IN std logic vector (3 DOWNTO O) ;
clk, 1d, rst, 1 r, s in : IN std logic;
q : OUT std logic vector (3 DOWNTO 0)) ;

END shift reg4;
ARCHITECTURE behavioral OF shift reg4 IS
BEGIN
PROCESS (clk)
VARIABLE g t: std logic vector (3 DOWNTO O0) ;
BEGIN
IF rising edge (clk) THEN
IF rst= 'l' THEN

g t := (OTHERS => '0');
ELSIF 1d = 'l' THEN
qg t :=d;
ELSIF 1 r = 'l' THEN
gt := gt (2 DOWNTO 0) & s in ;
ELSE
qt := s in & g t (3 DOWNTO 1) ;
END IF;
END IF;
q <= g t;

END PROCESS;
END behawvioral;

VHDL: Modular Design and
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Counters

ENTITY counter4 IS
PORT (reset, clk : IN std logic;

count : OUT std logic vector (3 DOWNTO 0)) ;

END ENTITY;
ARCHITECTURE procedural OF counter4d IS
SIGNAL cnt reg : std logic vector (3 DOWNTO O0) ;
BEGIN
PROCESS (clk)
BEGIN
IF (clk = '"0O" AND clk"EVENT) THEN
IF (reset='"'1l'"') THEN
cnt reg <="0000" AFTER 1.2 NS;
ELSE
cnt reg <= cnt reg + 1 AFTER 1.2 NS;
END IF;
END IF;
END PROCESS;
count <= cnt reg;
END ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems
Copyright Z. Navabi, 2007
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Synthesis of Shifters and Counters

= Shift Register Synthesis RTL View

VHDL: Modular Design and
Synthesis of Cores and Systems
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State Machine Coding

A Moore Machine
Sequence Detector

States are named: The State in which

s0,sl, s2,s3 the 110 sequence is

detected.

Initial
State

It Takes at least
3 clock periods to
get to the s3 state

= A Moore Sequence Detector

VHDL: Modular Design and
Synthesis of Cores and Systems
February 2019 Copyright Z. Navabi, 2007 1)



Mootre Machine VHDIL. Code

ENTITY detectorll0 IS
PORT (a, clk, reset

std logic) ;

END ENTITY

ARCHITECTURE procedural OF detectorl1l0 IS
TYPE state IS (SO0, S1, S2, S3);

SIGNAL current : state := SO;
BEGIN
PROCESS (clk) BEGIN
IF (clk = '0' AND clk'EVENT) THEN
IF reset = 'l' THEN current <= SO;
ELSE

CASE current IS
WHEN SO =>

IF a='1l' THEN current <= S1;

ELSE current <= S0; END IF;

IN std logic; w : OUT

WHEN S1 =>
IF a='l' THEN current <= S2;
ELSE current <= S0; END IF;
WHEN S2 =>
IF a='l' THEN current <= S2;
ELSE current <= S3; END IF;
WHEN S3 =>
IF a='1l' THEN current <= S1;
ELSE current <= S0; END IF;
WHEN OTHERS => current <= SO;
END CASE;
END IF;
END IF;
END PROCESS;
w <= 'l' WHEN current = S3 ELSE '0';

ND ARCHITECTURE procedural;

VHDL: Modular Design and
Synthesis of Cores and Systems
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Pulse Synchronizer

ENTITY synchronizer IS
PORT (clk, adata : IN std logic;
synched : OUT std logic) ;
END ENTITY ;
ARCHITECTURE procedural OF synchronizer IS
TYPE state IS (SO, S1);
SIGNAL current : state;
BEGIN
PROCESS (clk) BEGIN
IF (rising edge (clk)) THEN
IF current = SO0 THEN
IF adata = '0O' THEN
current <= SO;
ELSE
current <= S1;
END IF;
ELSE -- current = S1
current <= SO;
END IF;
END IF;
END PROCESS ; VHDyhmmmmImggnmw
synched <= '1' WHEﬁW%E§%§H£ﬁ%égE2%£§E '0';
END ARCHITECTURE procedural;
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State Machine Synthesis
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State Machine Synthesis
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Writing Testbenches

ARCHITECTURE

TYPE memory IS
ARRAY (INTEGER RANGE <>) OF

std logic vector (7 DOWNTO O0) ;
SIGNAL mem: memory (0 to 1023) ;
BEGIN
PROCESS (mem)
VARIABLE memv: memory (0 to 15) ;
VARIABLE data: std logic vector (7 DOWNTO O0) ;
VARIABLE short data: std logic vector (3 DOWNTO O0) ;

BEGIN

data := mem(956) ;
short data := mem(931) (6 downto 3);
memv (12) := mem(189) ;
mem (932) <= data ;
mem (321) (5 DOWNTO 2) <= short data;
mem (940) <= "0000" & short data ;

END PROCESS ;

END ARCHITECTURE ; VHDL: Modular Design and

Synthesis of Cores and Systems
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Writing Testbenches

ENTITY detectorllO_ tester IS END ENTITY;
ARCHITECTURE timed OF detectorll0 tester IS
SIGNAL aa, clock, rst, ww : std logic := '0';
BEGIN
UUT1: ENTITY WORK.detectorllO (procedural)
PORT MAP (aa, clock, rst, ww)
rst <= 'l' AFTER 31 NS, '0O' AFTER 54 NS;

clock <= NOT clock AFTER 7 NS WHEN NOW<=165 NS ELSE '0';

PROCESS BEGIN
WAIT FOR 23 NS; aa <= '1l';
WAIT FOR 21 NS; aa <= '0';
WAIT FOR 19 NS; aa <= '1l';
WAIT FOR 31 NS; aa <= '0';
WAIT;
END PROCESS;
PROCESS (ww) BEGIN
REPORT "Signal w changed to:"& std logic'IMAGE (ww) &
""at " & TIME'IMAGE (NOW)
SEVERITY NOTE ;
END PROCESS ; VHDL: Modular Design and

. Synthesis of Cores and Systems
END ARCHITECTURE timed; Copyright Z. Navabi, 2007
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Writing Testbenches

m wave - default

fdetector1 10_tester/clock
/detector110_tester/rst
Jdetector] 10_tester/ww
/detector] D_testen’aa

Cursor 1

" Testbench Waveform Results

VHDL: Modular Design and
Synthesis of Cores and Systems
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Summary

= This chapter presented:

= RT level description in the VHDILI HDL language

= examples of synthesizable one-to-one hardware
cotrespondence

= introducesing some VHDL terminologies that are
needed for understanding the linguistics of VHDL

= How testbenches could be developed in VHDL and new
constructs of it in this part

VHDL: Modular Design and
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