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Basic Structures of VHDL

 Post-synthesis Simulation in VHDL 
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Entities and Architectures

ENTITY entity_name IS

input and output ports

END ENTITY entity_name;

ARCHITECTURE identifier OF entity_name IS

declarative part

BEGIN

statement part

END ARCHITECTURE identifier;
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Entity-Architecture Outline 

ENTITY entity1 IS PORT (i1, i2 : IN BIT; w1 : OUT 

BIT);

END ENTITY entity1;

ARCHITECTURE simple1 OF entity1 IS

SIGNAL s1 : BIT;

BEGIN

statement1;

statement2;

statement3;

END ARCHITECTURE simple1;
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Entity-Architecture Outline 

Architecture Definition Alternatives  
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Entity Ports

ENTITY aCircuit IS 

PORT (a, b : IN BIT; 

c : INOUT BIT; 

av, bv : IN BIT_VECTOR (7 DOWNTO 0);

cv : INOUT BIT_VECTOR (7 DOWNTO 0);

w : OUT BIT;

wv : OUT BIT_VECTOR (7 DOWNTO 0));

END ENTITY aCircuit;
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 Signal and Variable Declaration

ARCHITECTURE two_processes OF aCircuit IS

SIGNAL d : BIT;

SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN

p1: PROCESS (a, b, cv) 

VARIABLE e : BIT;

VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);

BEGIN

-- Can see all of aCircuit, plus d, dv, e, and ev.

. . .

END PROCESS;

p2: PROCESS (av, bv, c) 

VARIABLE f : BIT;

VARIABLE fv : BIT_VECTOR (7 DOWNTO 0);

BEGIN

-- Can see all of aCircuit, plus d, dv, f, and fv.

. . .

END PROCESS;

END ARCHITECTURE two_processes;
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ARCHITECTURE four_assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL iv, jv, kv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
iv <= av AND cv;
jv <= bv AND cv;
kv <= av NOR bv;
wv <= iv XOR jv WHEN c = ‘1’ ELSE iv NAND kv;

END ARCHITECTURE four_assignments;

 Using Signals
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Data Part

ARCHITECTURE mixed_processes_assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
p1: PROCESS (a, b, cv) 

VARIABLE e : BIT;
VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);

BEGIN
IF (a = b) THEN ev := av; ELSE ev := bv;
IF (a = ‘1’) THEN wv <= av; ELSE wv <= “1000111”;
d <= e;

END PROCESS;

dv <= av XOR bv;
w <= d AND a;

END ARCHITECTURE mixed_processes_assignments;

 Using Signals and Variables
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Data Part

ARCHITECTURE indexing_slicing OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
wv (3 DOWNTO 0) <= av (7 DOWNTO 4) AND 

cv (7 DOWNTO 4);
w <= cv (4);
cv (7) <= av (0);

END ARCHITECTURE indexing_slicing;

 Using Indexing and Slicing
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Logic Value System

RepresentingValue

Uninitialized'U'

Forcing Unknown'X'

Forcing 0'0'

Forcing 1'1'

High Impedance'Z'

Weak Unknown'W'

Weak 0'L'

Weak 1'H'

Don’t care'-'
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Resolutions

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTIRY selector IS 

PORT (av, bv: IN std_logic_vector (7 DOWNTO 0), 

as, bs: IN std_logic; 

yv: OUT std_logic_vector (7 DOWNTO 0));

END ENTITY selector;

ARCHITECTURE multiple_drivers OF selector IS

BEGIN

yv <= av WHEN as = ‘1’ ELSE “ZZZZZZZZ”;

yv <= bv WHEN bs = ‘1’ ELSE “ZZZZZZZZ”;

END ARCHITECTURE multiple_drivers;

 Multiple Assignments to a Resolved Signal
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Resolutions

 Partial std_logic resolved Function

Z10XUU

UUUUUU

XXXXUX

0X0XU0

11XXU1

Z10XUZ
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Gate Level Combinational Circuits

 Basic Primitives Described in VHDL
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Majority Example 

 A Majority Circuit
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Majority Example

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY maj3 IS 

PORT (a, b, c : IN std_logic;    y  : OUT 

std_logic);

END maj3;

ARCHITECTURE gate_level OF maj3 IS

SIGNAL im1, im2, im3 : std_logic;

BEGIN

ANDa: ENTITY WORK.AND2 PORT MAP (a, b, im1);

ANDb: ENTITY WORK.AND2 PORT MAP (b, c, im2);

ANDc: ENTITY WORK.AND2 PORT MAP (a, c, im3);

ORa : ENTITY WORK.OR3  PORT MAP (im1, im2, im3, y);

END ARCHITECTURE gate_level;
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 Multiplexer Using Three-state Gates
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Multiplexer Example

ENTITY mux_2to1 IS 

PORT (a, b, s: IN std_logic; y: OUT std_logic);

END ENTITY mux_2to1;

ARCHITECTURE gate_level OF mux_2to1 IS BEGIN

BUFIF1a: ENTITY WORK.BUFIF1(example) PORT MAP (b, s, y);

BUFIF1b: ENTITY WORK.BUFIF0(example) PORT MAP (a, s, y);

END ARCHITECTURE gate_level;
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Gate Level Synthesis

 RTL (logical) View of  Synthesized maj3
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Descriptions by Use of Equations 

 VHDL Operators

XNORXORNORNANDORANDNOTBoolean 

Operators

>=><=</==Comparison 

Operators

**/*REMMODABS-+Arithmetic 

Operators

&Concat.

Operators
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XOR Example 

ENTITY xor2 IS 

PORT (i1, i2: IN std_logic; o1: OUT std_logic);

END ENTITY xor2;

--

ARCHITECTURE expression OF xor2 IS

BEGIN

o1 <= i1 XOR i2 AFTER 3 NS;

END ARCHITECTURE expression;
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Full-Adder Example 

ENTITY full_adder IS 
PORT (a, b, cin : IN std_logic; 

sum, cout : OUT std_logic);
END ENTITY full_adder;
--
ARCHITECTURE expression OF full_adder IS
BEGIN

sum <= a XOR b XOR cin AFTER 0.3 NS;
cout <= (a AND b) OR (a AND cin) OR (b AND cin) AFTER 0.2 

NS;
END ARCHITECTURE expression;

 Assign Statement and Boolean
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Comparator Example 
ENTITY comp_4bit IS PORT (

in1, in2 : IN std_logic_vector (3 DOWNTO 0);      

eq       : OUT std_logic );

END comp_4bit;

ARCHITECTURE functional OF comp_4bit IS   

SIGNAL im : std_logic_vector (3 DOWNTO 0);   

FUNCTION nor_reduce

(in1: IN std_logic_vector (3 DOWNTO 0)) 

RETURN std_logic

IS

VARIABLE result : std_logic ; 

BEGIN

result:= NOT (in1(3) OR in1(2) OR in1(1) OR 

in1(0)) ;

RETURN result;

END;

BEGIN   

im <= in1 XOR in2;

eq <= nor_reduce(im);

END functional;
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Multiplexer Example 

ENTITY multiplexer IS 
PORT (a, b : IN std_logic_vector; s : IN 

std_logic;
w : OUT std_logic_vector);

END ENTITY;
ARCHITECTURE expression OF multiplexer IS
BEGIN

w <= a WHEN s = '0' ELSE b;
END ARCHITECTURE expression;

 An Unconstrained 2-to-1 Mux using Condition Operator
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Decoder Example 

ENTITY dcd2to4 IS

PORT (sel: IN std_logic_vector (1 DOWNTO 0);

y: OUT std_logic_vector (3 DOWNTO 0) );

END dcd2to4;

ARCHITECTURE structural OF dcd2to4 IS 

BEGIN

WITH sel SELECT

y <= "0001" WHEN "00",

"0010" WHEN "01",

"0100" WHEN "10",

"1000" WHEN "11",

"0000" WHEN OTHERS;

END ARCHITECTURE structural;
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Adder Example 
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
ENTITY adder8 IS PORT (

a    : IN  std_logic_vector (7 DOWNTO 0);
b    : IN  std_logic_vector (7 DOWNTO 0);
ci   : IN  std_logic;
s    : OUT std_logic_vector (7 DOWNTO 0);
co   : OUT std_logic );

END ENTITY adder8;
--
ARCHITECTURE equation OF adder8 IS 

SIGNAL mid : std_logic_vector (8 DOWNTO 0);
BEGIN

mid <= ('0'&a) + ('0'&b) + ci;
co <= mid (8);
s  <= mid (7 DOWNTO 0);

END equation;

 Adder with Carry-in and Carry-out
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ALU Example 
ENTITY alu8 IS PORT (

a, b   : IN  std_logic_vector (7 DOWNTO 0);

addsub : IN  std_logic;

gt, zero, co : OUT std_logic;

r      : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8;

ARCHITECTURE assigns OF alu8 IS 

SIGNAL mid : std_logic_vector (8 DOWNTO 0);

BEGIN

mid <= ('0'& a) + ('0'& b) WHEN addsub = '1' ELSE ('0'& a) 

- ('0'& b);

co <= mid (8);

r  <= mid (7 DOWNTO 0);

gt <= '1' WHEN a > b ELSE '0';

zero <='1' WHEN mid (7 DOWNTO 0) = "00000000" ELSE '0';

END assigns;
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ALU Example Using Adder 

 ALU VHDL Code Using Instantiating an Adder

ENTITY alu8add IS PORT (

a, b   : IN std_logic_vector (7 DOWNTO 0);

gt, zero, co : OUT std_logic;

r      : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8add;

ARCHITECTURE assigns OF alu8add IS 

SIGNAL mid8 : std_logic_vector (7 DOWNTO 0);

SIGNAL mid1 : std_logic;

BEGIN

AD: ENTITY WORK.adder8 PORT MAP (a, b, '0', mid8, OPEN);

-- AD: ENTITY WORK.adder8 PORT MAP 

-- (a => a, b => b, ci => '0', s => mid8);

r  <= mid8;

gt <= '1' WHEN a > b ELSE '0';

zero <= '1' WHEN mid8 = "00000000" ELSE '0';

END assigns;
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Synthesis of Assignment Statements

 ALU_Adder RTL View after Synthesis
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Synthesis of Assignment Statements

 ALU_Adder RTL View after Synthesis
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Descriptions with Sequential 

Flow

ENTITY maj3 IS 

PORT (a, b, c : IN std_logic;

y       : OUT std_logic);

END maj3;

ARCHITECTURE sequential OF maj3 IS

BEGIN

PROCESS (a, b, c)

BEGIN 

y <= (a AND b) OR (b AND c) OR (a AND c);

END PROCESS;

END ARCHITECTURE sequential;

 Procedural Block Describing a Majority Circuit
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Majority Example with Delay 

ARCHITECTURE sequential_delay OF maj3 IS

BEGIN

PROCESS (a, b, c)

BEGIN 

y <= (a AND b) OR (b AND c) OR (a AND c) AFTER 5 

NS;

END PROCESS;

END ARCHITECTURE sequential_delay;
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Procedural Multiplexer Example 

ENTITY multiplexer IS 

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE procedural OF multiplexer IS BEGIN

PROCESS (a, b, s) BEGIN

IF (s = '0') THEN w <= a;

ELSE w <= b;

END IF;

END PROCESS;

END ARCHITECTURE procedural;

 Sequential Flow Multiplexer
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Procedural ALU Example 
ENTITY alu8 IS 

PORT (left_i, right_i: IN std_logic_vector (7 DOWNTO 0);

mode : IN std_logic_vector (1 DOWNTO 0);

aluout : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY;

--

ARCHITECTURE procedural OF alu8 IS BEGIN

PROCESS (left_i, right_i, mode) BEGIN

CASE mode IS

WHEN "00" => aluout <= left_i + right_i;

WHEN "01" => aluout <= left_i - right_i;

WHEN "10" => aluout <= left_i AND right_i; 

WHEN "11" => aluout <= left_i OR right_i;

WHEN OTHERS => aluout <= "XXXXXXXX";

END CASE;

END PROCESS;

END ARCHITECTURE procedural;
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Bussing
ENTITY bussing IS

PORT (

busin1: IN std_logic_vector (3 DOWNTO 0);

busin2: IN std_logic_vector (3 DOWNTO 0);

busin3: IN std_logic_vector (3 DOWNTO 0);

en1: IN  std_logic;

en2: IN  std_logic;

en3: IN  std_logic;

busout: OUT std_logic_vector(3 DOWNTO 0) );

END bussing;

--

ARCHITECTURE structural OF bussing IS

BEGIN

busout <= busin1 WHEN en1 = '1' ELSE (OTHERS => 'Z'); 

busout <= busin2 WHEN en2 = '1' ELSE (OTHERS => 'Z'); 

busout <= busin3 WHEN en3 = '1' ELSE (OTHERS => 'Z'); 

END structural;

 Three-state Bussing
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Synthesizing Procedural Blocks

 Synthesis of  

Sequential Flow ALU
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Basic Memory Elements 

at the Gate Level

 Clocked D-latch
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Basic Memory Elements 

at the Gate Level
ENTITY latch IS

PORT (d, c: IN std_logic;

q, q_b : BUFFER std_logic);

END latch;

ARCHITECTURE structural OF latch IS

SIGNAL s, r : std_logic;

BEGIN

s   <= c AND d       AFTER 6 ns;

r   <= c AND (NOT d) AFTER 6 ns;

q_b <= s NOR q       AFTER 4 ns;

q   <= r NOR q_b AFTER 4 ns;

END structural;

 37  VHDL Code for a Clocked D-latch
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Basic Memory Elements 

at the Gate Level

ENTITY master_slave IS
PORT (d, c: IN std_logic;

q : OUT std_logic);
END master_slave;
ARCHITECTURE dual OF master_slave IS

SIGNAL qm : std_logic;
BEGIN

qm <= d WHEN c = '1';
q  <= qm WHEN c = '0';

END dual;

 Master-Slave Flip-Flop
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Memory Elements Using 

Procedural Statements

ENTITY latch1 IS

PORT (d, c: IN std_logic; q: OUT std_logic);

END latch1;

ARCHITECTURE behavioral OF latch1 IS

BEGIN

PROCESS (d, c) 

BEGIN

IF c = '1' THEN 

q <= d;

END IF;

END PROCESS;

END ARCHITECTURE behavioral;

 Procedural Latch
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D Flip-Flop 

ENTITY DFF1 IS
PORT (d, clk: IN std_logic; q : OUT std_logic);

END DFF1;
--
ARCHITECTURE behavioral OF DFF1 IS
BEGIN

PROCESS (clk) 
BEGIN

IF clk = '1' AND clk'EVENT THEN 
q <= d;

END IF;
END PROCESS;

END ARCHITECTURE behavioral;

 A Positive-Edge D Flip-Flop
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Synchronous Control 
ENTITY DFF1sr IS

PORT (d, clk, s, r: IN std_logic; q : OUT std_logic);

END DFF1sr;

--

ARCHITECTURE behavioral OF DFF1sr IS

BEGIN

PROCESS (clk) 

BEGIN

IF clk = '1' AND clk'EVENT THEN 

IF s = '1' THEN

q <= '1';

ELSIF r = '1' THEN

q <= '0';

ELSE 

q <= d;

END IF;

END IF;

END PROCESS;

END ARCHITECTURE behavioral;
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Synchronous Control 



February 2019 51

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Asynchronous Control 

ARCHITECTURE asynchronous OF DFF1sr IS 

BEGIN

PROCESS (clk, s, r) BEGIN

IF s = '1' THEN

q <= '1';

ELSIF r = '1' THEN

q <= '0';

ELSIF clk = '1' AND clk'EVENT THEN 

q <= d;

END IF;

END PROCESS;

END ARCHITECTURE asynchronous;
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Asynchronous Control 
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Flip-flop Synthesis

 Synchronous Flip-Flop Synthesis
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 Asynchronous Flip-Flop Synthesis

Flip-flop Synthesis
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Flip-flop Synthesis
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Flip-flop Synthesis
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Registers
ENTITY register8 IS

PORT (
d : IN std_logic_vector (7 DOWNTO 0);

clk, s, r  : IN std_logic;
q : OUT std_logic_vector ( 7 DOWNTO 0));

END register8;
--
ARCHITECTURE behavioral OF register8 IS 
BEGIN

PROCESS (clk)
BEGIN

IF clk = '1' AND clk'event THEN
IF s= '1' THEN

q <= (OTHERS => '1');
ELSIF r = '1' THEN

q <= (OTHERS => '0');
ELSE

q <= d;
END IF;

END IF;
END PROCESS;

END behavioral;
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Shift-Registers
ENTITY shift_reg4 IS

PORT (
d   : IN std_logic_vector (3 DOWNTO 0);
clk, ld, rst, l_r, s_in : IN std_logic;
q   : OUT std_logic_vector (3 DOWNTO 0));

END shift_reg4;
ARCHITECTURE behavioral OF shift_reg4 IS 
BEGIN

PROCESS (clk)
VARIABLE q_t: std_logic_vector (3 DOWNTO 0);

BEGIN
IF rising_edge (clk) THEN

IF rst= '1' THEN
q_t := (OTHERS => '0');

ELSIF ld = '1' THEN
q_t := d;

ELSIF l_r = '1' THEN
q_t :=  q_t (2 DOWNTO 0) & s_in ;

ELSE 
q_t := s_in & q_t (3 DOWNTO 1);

END IF;
END IF;
q <= q_t;

END PROCESS;
END behavioral;
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Counters
ENTITY counter4 IS 

PORT (reset, clk : IN std_logic; 

count : OUT std_logic_vector (3 DOWNTO 0));

END ENTITY;

--

ARCHITECTURE procedural OF counter4 IS

SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

BEGIN

PROCESS (clk) 

BEGIN

IF (clk = '0' AND clk'EVENT) THEN

IF (reset='1') THEN 

cnt_reg <="0000" AFTER 1.2 NS;

ELSE 

cnt_reg <= cnt_reg + 1 AFTER 1.2 NS;

END IF;

END IF;

END PROCESS;

count <= cnt_reg;

END ARCHITECTURE procedural;
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Synthesis of Shifters and Counters

 Shift Register Synthesis RTL View
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State Machine Coding

 A Moore Sequence Detector

Initial 

State

01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

States are named:

s0 , s1 , s2 , s3

The State in which 

the 110 sequence is 

detected.

It Takes at least 

3 clock periods to 

get to the s3 state

A Moore Machine

Sequence Detector
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Moore Machine VHDL Code 
ENTITY detector110 IS 

PORT (a, clk, reset : IN std_logic; w : OUT 

std_logic);

END ENTITY;

--

ARCHITECTURE procedural OF detector110 IS

TYPE state IS (S0, S1, S2, S3);

SIGNAL current : state := S0;

BEGIN

PROCESS (clk) BEGIN

IF (clk = '0' AND clk'EVENT) THEN

IF reset = '1' THEN current <= S0;

ELSE

CASE current IS

WHEN S0 => 

IF a='1' THEN current <= S1; 

ELSE current <= S0; END IF;

WHEN S1 => 

IF a='1' THEN current <= S2; 

ELSE current <= S0; END IF;

WHEN S2 => 

IF a='1' THEN current <= S2; 

ELSE current <= S3; END IF;

WHEN S3 => 

IF a='1' THEN current <= S1; 

ELSE current <= S0; END IF;

WHEN OTHERS => current <= S0;

END CASE;

END IF;

END IF;

END PROCESS;

w <= '1' WHEN current = S3 ELSE '0';

END ARCHITECTURE procedural;
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Pulse Synchronizer 
ENTITY synchronizer IS 

PORT (clk, adata : IN std_logic; 

synched : OUT std_logic);

END ENTITY;

--

ARCHITECTURE procedural OF synchronizer IS

TYPE state IS (S0, S1);

SIGNAL current : state;

BEGIN

PROCESS (clk) BEGIN

IF (rising_edge(clk)) THEN

IF current = S0 THEN 

IF adata = '0' THEN 

current <= S0; 

ELSE 

current <= S1;

END IF;

ELSE -- current = S1

current <= S0;

END IF;

END IF;   

END PROCESS;

synched <= '1' WHEN current = S1 ELSE '0';

END ARCHITECTURE procedural;
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State Machine Synthesis
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State Machine Synthesis
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Writing Testbenches
ARCHITECTURE . . .

TYPE memory IS 

ARRAY (INTEGER RANGE <>) OF 

std_logic_vector (7 DOWNTO 0); 

SIGNAL mem: memory(0 to 1023);

BEGIN

PROCESS (mem)

VARIABLE memv: memory(0 to 15);

VARIABLE data: std_logic_vector(7 DOWNTO 0);

VARIABLE short_data: std_logic_vector(3 DOWNTO 0);

BEGIN

. . .

data := mem(956);

short_data := mem(931)(6 downto 3);

memv (12) := mem(189);

mem (932) <= data ;

mem (321)(5 DOWNTO 2) <= short_data;

mem (940) <= "0000" & short_data ;

END PROCESS;

. . .

END ARCHITECTURE;
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Writing Testbenches
ENTITY detector110_tester IS END ENTITY;

--

ARCHITECTURE timed OF detector110_tester IS

SIGNAL aa, clock, rst, ww : std_logic := '0'; 

BEGIN

UUT1: ENTITY WORK.detector110 (procedural) 

PORT MAP (aa, clock, rst, ww);

rst <= '1' AFTER 31 NS, '0' AFTER 54 NS;

clock <= NOT clock AFTER 7 NS WHEN NOW<=165 NS ELSE '0';

PROCESS BEGIN

WAIT FOR 23 NS; aa <= '1';

WAIT FOR 21 NS; aa <= '0';

WAIT FOR 19 NS; aa <= '1';

WAIT FOR 31 NS; aa <= '0';

WAIT;

END PROCESS;

PROCESS (ww) BEGIN

REPORT "Signal w changed to:"& std_logic'IMAGE(ww)& 

" at " & TIME'IMAGE(NOW) 

SEVERITY NOTE;

END PROCESS;

END ARCHITECTURE timed;
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Writing Testbenches

 Testbench Waveform Results
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Summary

 This chapter presented:

 RT level description in the VHDL HDL language 

 examples of synthesizable one-to-one hardware 

correspondence

 introducesing some VHDL terminologies that are 

needed for understanding the linguistics of VHDL

 How testbenches could be developed in VHDL and new 

constructs of it in this part


