
February 2019 1

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Chapter 2

RTL Design with VHDL

February 2019 2

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

RTL Design with VHDL
2.1 Basic Structures of VHDL

2.1.1 Entities and Architectures

2.1.2 Entity-Architecture Outline

2.1.3 Entity Ports

2.1.4 Signals and Variables

2.1.5 Logic Value System

2.1.6 Resolutions

2.2 Combinational Circuits

2.2.1 Gate Level Combinational Circuits

2.2.2 Gate Level Synthesis

2.2.3 Descriptions by Use of Equations

2.2.4 Instantiating Other Modules

2.2.5 Synthesis of Assignment Statements

2.2.6 Descriptions with Sequential Flow

2.2.7 Combinational Rules

February 2019 3

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

RTL Design with VHDL

2.2.8 Bussing

2.2.9 Synthesizing Procedural Blocks

2.3 Sequential Circuits

2.3.1 Basic Memory Elements at the Gate Level

2.3.2 Memory Elements Using Procedural Statements

2.3.3 Flip-flop Synthesis

2.3.4 Registers, Shifters and Counters

2.3.5 Synthesis of Shifters and Counters

2.3.6 State Machine Coding

2.3.7 State Machine Synthesi

2.3.8 Memories

2.4 Writing Testbenches

2.5 Synthesis Issues

February 2019 4

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

RTL Design with VHDL
2.6 VHDL Essential Terminologies

2.6.1 Design

2.6.2 Analysis

2.6.3 Library

2.6.4 Standard Packages

2.6.5 Elaboration

2.6.6 Event Driven Simulation

2.6.7 Concurrency

2.6.8 Concurrent Bodies

2.6.9 Sequentiality

2.6.10 Sequential Bodies

2.6.11 VHDL Objects and Classes

2.6.12 Real Time

2.6.13 Delta Delay

2.6.14 Scheduling

2.6.15 Resolution

2.6.16 Code Formal

2.7 Summary

February 2019 5

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Structures of VHDL

 Simulation in VHDL

February 2019 6

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Structures of VHDL

 Synthesis of a VHDL Design

February 2019 7

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Structures of VHDL

 Post-synthesis Simulation in VHDL

February 2019 8

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Entities and Architectures

ENTITY entity_name IS

input and output ports

END ENTITY entity_name;

ARCHITECTURE identifier OF entity_name IS

declarative part

BEGIN

statement part

END ARCHITECTURE identifier;

February 2019 9

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Entities and Architectures

February 2019 10

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Entity-Architecture Outline

ENTITY entity1 IS PORT (i1, i2 : IN BIT; w1 : OUT

BIT);

END ENTITY entity1;

ARCHITECTURE simple1 OF entity1 IS

SIGNAL s1 : BIT;

BEGIN

statement1;

statement2;

statement3;

END ARCHITECTURE simple1;

February 2019 11

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Entity-Architecture Outline

Architecture Definition Alternatives

February 2019 12

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Entity Ports

ENTITY aCircuit IS

PORT (a, b : IN BIT;

c : INOUT BIT;

av, bv : IN BIT_VECTOR (7 DOWNTO 0);

cv : INOUT BIT_VECTOR (7 DOWNTO 0);

w : OUT BIT;

wv : OUT BIT_VECTOR (7 DOWNTO 0));

END ENTITY aCircuit;

February 2019 13

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Signals and Variables

 Signal and Variable Declaration

ARCHITECTURE two_processes OF aCircuit IS

SIGNAL d : BIT;

SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN

p1: PROCESS (a, b, cv)

VARIABLE e : BIT;

VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);

BEGIN

-- Can see all of aCircuit, plus d, dv, e, and ev.

. . .

END PROCESS;

p2: PROCESS (av, bv, c)

VARIABLE f : BIT;

VARIABLE fv : BIT_VECTOR (7 DOWNTO 0);

BEGIN

-- Can see all of aCircuit, plus d, dv, f, and fv.

. . .

END PROCESS;

END ARCHITECTURE two_processes;

February 2019 14

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Data Part

ARCHITECTURE four_assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL iv, jv, kv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
iv <= av AND cv;
jv <= bv AND cv;
kv <= av NOR bv;
wv <= iv XOR jv WHEN c = ‘1’ ELSE iv NAND kv;

END ARCHITECTURE four_assignments;

 Using Signals

February 2019 15

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Data Part

ARCHITECTURE mixed_processes_assignments OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
p1: PROCESS (a, b, cv)

VARIABLE e : BIT;
VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);

BEGIN
IF (a = b) THEN ev := av; ELSE ev := bv;
IF (a = ‘1’) THEN wv <= av; ELSE wv <= “1000111”;
d <= e;

END PROCESS;

dv <= av XOR bv;
w <= d AND a;

END ARCHITECTURE mixed_processes_assignments;

 Using Signals and Variables

February 2019 16

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Data Part

ARCHITECTURE indexing_slicing OF aCircuit IS
SIGNAL d : BIT;
SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);

BEGIN
wv (3 DOWNTO 0) <= av (7 DOWNTO 4) AND

cv (7 DOWNTO 4);
w <= cv (4);
cv (7) <= av (0);

END ARCHITECTURE indexing_slicing;

 Using Indexing and Slicing

February 2019 17

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Logic Value System

RepresentingValue

Uninitialized'U'

Forcing Unknown'X'

Forcing 0'0'

Forcing 1'1'

High Impedance'Z'

Weak Unknown'W'

Weak 0'L'

Weak 1'H'

Don’t care'-'

February 2019 18

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Resolutions

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTIRY selector IS

PORT (av, bv: IN std_logic_vector (7 DOWNTO 0),

as, bs: IN std_logic;

yv: OUT std_logic_vector (7 DOWNTO 0));

END ENTITY selector;

ARCHITECTURE multiple_drivers OF selector IS

BEGIN

yv <= av WHEN as = ‘1’ ELSE “ZZZZZZZZ”;

yv <= bv WHEN bs = ‘1’ ELSE “ZZZZZZZZ”;

END ARCHITECTURE multiple_drivers;

 Multiple Assignments to a Resolved Signal

February 2019 19

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Resolutions

 Partial std_logic resolved Function

Z10XUU

UUUUUU

XXXXUX

0X0XU0

11XXU1

Z10XUZ

February 2019 20

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Gate Level Combinational Circuits

 Basic Primitives Described in VHDL

February 2019 21

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Majority Example

 A Majority Circuit

February 2019 22

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Majority Example

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY maj3 IS

PORT (a, b, c : IN std_logic; y : OUT

std_logic);

END maj3;

ARCHITECTURE gate_level OF maj3 IS

SIGNAL im1, im2, im3 : std_logic;

BEGIN

ANDa: ENTITY WORK.AND2 PORT MAP (a, b, im1);

ANDb: ENTITY WORK.AND2 PORT MAP (b, c, im2);

ANDc: ENTITY WORK.AND2 PORT MAP (a, c, im3);

ORa : ENTITY WORK.OR3 PORT MAP (im1, im2, im3, y);

END ARCHITECTURE gate_level;

February 2019 23

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Multiplexer Example

 Multiplexer Using Three-state Gates

February 2019 24

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Multiplexer Example

ENTITY mux_2to1 IS

PORT (a, b, s: IN std_logic; y: OUT std_logic);

END ENTITY mux_2to1;

ARCHITECTURE gate_level OF mux_2to1 IS BEGIN

BUFIF1a: ENTITY WORK.BUFIF1(example) PORT MAP (b, s, y);

BUFIF1b: ENTITY WORK.BUFIF0(example) PORT MAP (a, s, y);

END ARCHITECTURE gate_level;

February 2019 25

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Gate Level Synthesis

February 2019 26

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Gate Level Synthesis

 RTL (logical) View of Synthesized maj3

February 2019 27

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Descriptions by Use of Equations

 VHDL Operators

XNORXORNORNANDORANDNOTBoolean

Operators

>=><=</==Comparison

Operators

**/*REMMODABS-+Arithmetic

Operators

&Concat.

Operators

February 2019 28

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

XOR Example

ENTITY xor2 IS

PORT (i1, i2: IN std_logic; o1: OUT std_logic);

END ENTITY xor2;

--

ARCHITECTURE expression OF xor2 IS

BEGIN

o1 <= i1 XOR i2 AFTER 3 NS;

END ARCHITECTURE expression;

February 2019 29

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Full-Adder Example

ENTITY full_adder IS
PORT (a, b, cin : IN std_logic;

sum, cout : OUT std_logic);
END ENTITY full_adder;
--
ARCHITECTURE expression OF full_adder IS
BEGIN

sum <= a XOR b XOR cin AFTER 0.3 NS;
cout <= (a AND b) OR (a AND cin) OR (b AND cin) AFTER 0.2

NS;
END ARCHITECTURE expression;

 Assign Statement and Boolean

February 2019 30

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Comparator Example
ENTITY comp_4bit IS PORT (

in1, in2 : IN std_logic_vector (3 DOWNTO 0);

eq : OUT std_logic);

END comp_4bit;

ARCHITECTURE functional OF comp_4bit IS

SIGNAL im : std_logic_vector (3 DOWNTO 0);

FUNCTION nor_reduce

(in1: IN std_logic_vector (3 DOWNTO 0))

RETURN std_logic

IS

VARIABLE result : std_logic ;

BEGIN

result:= NOT (in1(3) OR in1(2) OR in1(1) OR

in1(0)) ;

RETURN result;

END;

BEGIN

im <= in1 XOR in2;

eq <= nor_reduce(im);

END functional;

February 2019 31

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Multiplexer Example

ENTITY multiplexer IS
PORT (a, b : IN std_logic_vector; s : IN

std_logic;
w : OUT std_logic_vector);

END ENTITY;
ARCHITECTURE expression OF multiplexer IS
BEGIN

w <= a WHEN s = '0' ELSE b;
END ARCHITECTURE expression;

 An Unconstrained 2-to-1 Mux using Condition Operator

February 2019 32

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Decoder Example

ENTITY dcd2to4 IS

PORT (sel: IN std_logic_vector (1 DOWNTO 0);

y: OUT std_logic_vector (3 DOWNTO 0));

END dcd2to4;

ARCHITECTURE structural OF dcd2to4 IS

BEGIN

WITH sel SELECT

y <= "0001" WHEN "00",

"0010" WHEN "01",

"0100" WHEN "10",

"1000" WHEN "11",

"0000" WHEN OTHERS;

END ARCHITECTURE structural;

February 2019 33

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Adder Example
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
ENTITY adder8 IS PORT (

a : IN std_logic_vector (7 DOWNTO 0);
b : IN std_logic_vector (7 DOWNTO 0);
ci : IN std_logic;
s : OUT std_logic_vector (7 DOWNTO 0);
co : OUT std_logic);

END ENTITY adder8;
--
ARCHITECTURE equation OF adder8 IS

SIGNAL mid : std_logic_vector (8 DOWNTO 0);
BEGIN

mid <= ('0'&a) + ('0'&b) + ci;
co <= mid (8);
s <= mid (7 DOWNTO 0);

END equation;

 Adder with Carry-in and Carry-out

February 2019 34

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ALU Example
ENTITY alu8 IS PORT (

a, b : IN std_logic_vector (7 DOWNTO 0);

addsub : IN std_logic;

gt, zero, co : OUT std_logic;

r : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8;

ARCHITECTURE assigns OF alu8 IS

SIGNAL mid : std_logic_vector (8 DOWNTO 0);

BEGIN

mid <= ('0'& a) + ('0'& b) WHEN addsub = '1' ELSE ('0'& a)

- ('0'& b);

co <= mid (8);

r <= mid (7 DOWNTO 0);

gt <= '1' WHEN a > b ELSE '0';

zero <='1' WHEN mid (7 DOWNTO 0) = "00000000" ELSE '0';

END assigns;

February 2019 35

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

ALU Example Using Adder

 ALU VHDL Code Using Instantiating an Adder

ENTITY alu8add IS PORT (

a, b : IN std_logic_vector (7 DOWNTO 0);

gt, zero, co : OUT std_logic;

r : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY alu8add;

ARCHITECTURE assigns OF alu8add IS

SIGNAL mid8 : std_logic_vector (7 DOWNTO 0);

SIGNAL mid1 : std_logic;

BEGIN

AD: ENTITY WORK.adder8 PORT MAP (a, b, '0', mid8, OPEN);

-- AD: ENTITY WORK.adder8 PORT MAP

-- (a => a, b => b, ci => '0', s => mid8);

r <= mid8;

gt <= '1' WHEN a > b ELSE '0';

zero <= '1' WHEN mid8 = "00000000" ELSE '0';

END assigns;

February 2019 36

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synthesis of Assignment Statements

 ALU_Adder RTL View after Synthesis

February 2019 37

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synthesis of Assignment Statements

 ALU_Adder RTL View after Synthesis

February 2019 38

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Descriptions with Sequential

Flow

ENTITY maj3 IS

PORT (a, b, c : IN std_logic;

y : OUT std_logic);

END maj3;

ARCHITECTURE sequential OF maj3 IS

BEGIN

PROCESS (a, b, c)

BEGIN

y <= (a AND b) OR (b AND c) OR (a AND c);

END PROCESS;

END ARCHITECTURE sequential;

 Procedural Block Describing a Majority Circuit

February 2019 39

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Majority Example with Delay

ARCHITECTURE sequential_delay OF maj3 IS

BEGIN

PROCESS (a, b, c)

BEGIN

y <= (a AND b) OR (b AND c) OR (a AND c) AFTER 5

NS;

END PROCESS;

END ARCHITECTURE sequential_delay;

February 2019 40

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Procedural Multiplexer Example

ENTITY multiplexer IS

PORT (a, b, s : IN BIT; w : OUT BIT);

END ENTITY;

--

ARCHITECTURE procedural OF multiplexer IS BEGIN

PROCESS (a, b, s) BEGIN

IF (s = '0') THEN w <= a;

ELSE w <= b;

END IF;

END PROCESS;

END ARCHITECTURE procedural;

 Sequential Flow Multiplexer

February 2019 41

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Procedural ALU Example
ENTITY alu8 IS

PORT (left_i, right_i: IN std_logic_vector (7 DOWNTO 0);

mode : IN std_logic_vector (1 DOWNTO 0);

aluout : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY;

--

ARCHITECTURE procedural OF alu8 IS BEGIN

PROCESS (left_i, right_i, mode) BEGIN

CASE mode IS

WHEN "00" => aluout <= left_i + right_i;

WHEN "01" => aluout <= left_i - right_i;

WHEN "10" => aluout <= left_i AND right_i;

WHEN "11" => aluout <= left_i OR right_i;

WHEN OTHERS => aluout <= "XXXXXXXX";

END CASE;

END PROCESS;

END ARCHITECTURE procedural;

February 2019 42

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Bussing
ENTITY bussing IS

PORT (

busin1: IN std_logic_vector (3 DOWNTO 0);

busin2: IN std_logic_vector (3 DOWNTO 0);

busin3: IN std_logic_vector (3 DOWNTO 0);

en1: IN std_logic;

en2: IN std_logic;

en3: IN std_logic;

busout: OUT std_logic_vector(3 DOWNTO 0));

END bussing;

--

ARCHITECTURE structural OF bussing IS

BEGIN

busout <= busin1 WHEN en1 = '1' ELSE (OTHERS => 'Z');

busout <= busin2 WHEN en2 = '1' ELSE (OTHERS => 'Z');

busout <= busin3 WHEN en3 = '1' ELSE (OTHERS => 'Z');

END structural;

 Three-state Bussing

February 2019 43

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synthesizing Procedural Blocks

 Synthesis of

Sequential Flow ALU

February 2019 44

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Memory Elements

at the Gate Level

 Clocked D-latch

February 2019 45

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Memory Elements

at the Gate Level
ENTITY latch IS

PORT (d, c: IN std_logic;

q, q_b : BUFFER std_logic);

END latch;

ARCHITECTURE structural OF latch IS

SIGNAL s, r : std_logic;

BEGIN

s <= c AND d AFTER 6 ns;

r <= c AND (NOT d) AFTER 6 ns;

q_b <= s NOR q AFTER 4 ns;

q <= r NOR q_b AFTER 4 ns;

END structural;

 37 VHDL Code for a Clocked D-latch

February 2019 46

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Basic Memory Elements

at the Gate Level

ENTITY master_slave IS
PORT (d, c: IN std_logic;

q : OUT std_logic);
END master_slave;
ARCHITECTURE dual OF master_slave IS

SIGNAL qm : std_logic;
BEGIN

qm <= d WHEN c = '1';
q <= qm WHEN c = '0';

END dual;

 Master-Slave Flip-Flop

February 2019 47

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Memory Elements Using

Procedural Statements

ENTITY latch1 IS

PORT (d, c: IN std_logic; q: OUT std_logic);

END latch1;

ARCHITECTURE behavioral OF latch1 IS

BEGIN

PROCESS (d, c)

BEGIN

IF c = '1' THEN

q <= d;

END IF;

END PROCESS;

END ARCHITECTURE behavioral;

 Procedural Latch

February 2019 48

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

D Flip-Flop

ENTITY DFF1 IS
PORT (d, clk: IN std_logic; q : OUT std_logic);

END DFF1;
--
ARCHITECTURE behavioral OF DFF1 IS
BEGIN

PROCESS (clk)
BEGIN

IF clk = '1' AND clk'EVENT THEN
q <= d;

END IF;
END PROCESS;

END ARCHITECTURE behavioral;

 A Positive-Edge D Flip-Flop

February 2019 49

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synchronous Control
ENTITY DFF1sr IS

PORT (d, clk, s, r: IN std_logic; q : OUT std_logic);

END DFF1sr;

--

ARCHITECTURE behavioral OF DFF1sr IS

BEGIN

PROCESS (clk)

BEGIN

IF clk = '1' AND clk'EVENT THEN

IF s = '1' THEN

q <= '1';

ELSIF r = '1' THEN

q <= '0';

ELSE

q <= d;

END IF;

END IF;

END PROCESS;

END ARCHITECTURE behavioral;

February 2019 50

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synchronous Control

February 2019 51

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Asynchronous Control

ARCHITECTURE asynchronous OF DFF1sr IS

BEGIN

PROCESS (clk, s, r) BEGIN

IF s = '1' THEN

q <= '1';

ELSIF r = '1' THEN

q <= '0';

ELSIF clk = '1' AND clk'EVENT THEN

q <= d;

END IF;

END PROCESS;

END ARCHITECTURE asynchronous;

February 2019 52

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Asynchronous Control

February 2019 53

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Flip-flop Synthesis

 Synchronous Flip-Flop Synthesis

February 2019 54

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

 Asynchronous Flip-Flop Synthesis

Flip-flop Synthesis

February 2019 55

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Flip-flop Synthesis

February 2019 56

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Flip-flop Synthesis

February 2019 57

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Registers
ENTITY register8 IS

PORT (
d : IN std_logic_vector (7 DOWNTO 0);

clk, s, r : IN std_logic;
q : OUT std_logic_vector (7 DOWNTO 0));

END register8;
--
ARCHITECTURE behavioral OF register8 IS
BEGIN

PROCESS (clk)
BEGIN

IF clk = '1' AND clk'event THEN
IF s= '1' THEN

q <= (OTHERS => '1');
ELSIF r = '1' THEN

q <= (OTHERS => '0');
ELSE

q <= d;
END IF;

END IF;
END PROCESS;

END behavioral;

February 2019 58

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Shift-Registers
ENTITY shift_reg4 IS

PORT (
d : IN std_logic_vector (3 DOWNTO 0);
clk, ld, rst, l_r, s_in : IN std_logic;
q : OUT std_logic_vector (3 DOWNTO 0));

END shift_reg4;
ARCHITECTURE behavioral OF shift_reg4 IS
BEGIN

PROCESS (clk)
VARIABLE q_t: std_logic_vector (3 DOWNTO 0);

BEGIN
IF rising_edge (clk) THEN

IF rst= '1' THEN
q_t := (OTHERS => '0');

ELSIF ld = '1' THEN
q_t := d;

ELSIF l_r = '1' THEN
q_t := q_t (2 DOWNTO 0) & s_in ;

ELSE
q_t := s_in & q_t (3 DOWNTO 1);

END IF;
END IF;
q <= q_t;

END PROCESS;
END behavioral;

February 2019 59

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Counters
ENTITY counter4 IS

PORT (reset, clk : IN std_logic;

count : OUT std_logic_vector (3 DOWNTO 0));

END ENTITY;

--

ARCHITECTURE procedural OF counter4 IS

SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

BEGIN

PROCESS (clk)

BEGIN

IF (clk = '0' AND clk'EVENT) THEN

IF (reset='1') THEN

cnt_reg <="0000" AFTER 1.2 NS;

ELSE

cnt_reg <= cnt_reg + 1 AFTER 1.2 NS;

END IF;

END IF;

END PROCESS;

count <= cnt_reg;

END ARCHITECTURE procedural;

February 2019 60

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Synthesis of Shifters and Counters

 Shift Register Synthesis RTL View

February 2019 61

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

State Machine Coding

 A Moore Sequence Detector

Initial

State

01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

States are named:

s0 , s1 , s2 , s3

The State in which

the 110 sequence is

detected.

It Takes at least

3 clock periods to

get to the s3 state

A Moore Machine

Sequence Detector

February 2019 62

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Moore Machine VHDL Code
ENTITY detector110 IS

PORT (a, clk, reset : IN std_logic; w : OUT

std_logic);

END ENTITY;

--

ARCHITECTURE procedural OF detector110 IS

TYPE state IS (S0, S1, S2, S3);

SIGNAL current : state := S0;

BEGIN

PROCESS (clk) BEGIN

IF (clk = '0' AND clk'EVENT) THEN

IF reset = '1' THEN current <= S0;

ELSE

CASE current IS

WHEN S0 =>

IF a='1' THEN current <= S1;

ELSE current <= S0; END IF;

WHEN S1 =>

IF a='1' THEN current <= S2;

ELSE current <= S0; END IF;

WHEN S2 =>

IF a='1' THEN current <= S2;

ELSE current <= S3; END IF;

WHEN S3 =>

IF a='1' THEN current <= S1;

ELSE current <= S0; END IF;

WHEN OTHERS => current <= S0;

END CASE;

END IF;

END IF;

END PROCESS;

w <= '1' WHEN current = S3 ELSE '0';

END ARCHITECTURE procedural;

February 2019 63

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Pulse Synchronizer
ENTITY synchronizer IS

PORT (clk, adata : IN std_logic;

synched : OUT std_logic);

END ENTITY;

--

ARCHITECTURE procedural OF synchronizer IS

TYPE state IS (S0, S1);

SIGNAL current : state;

BEGIN

PROCESS (clk) BEGIN

IF (rising_edge(clk)) THEN

IF current = S0 THEN

IF adata = '0' THEN

current <= S0;

ELSE

current <= S1;

END IF;

ELSE -- current = S1

current <= S0;

END IF;

END IF;

END PROCESS;

synched <= '1' WHEN current = S1 ELSE '0';

END ARCHITECTURE procedural;

February 2019 64

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

State Machine Synthesis

February 2019 65

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

State Machine Synthesis

February 2019 66

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Writing Testbenches
ARCHITECTURE . . .

TYPE memory IS

ARRAY (INTEGER RANGE <>) OF

std_logic_vector (7 DOWNTO 0);

SIGNAL mem: memory(0 to 1023);

BEGIN

PROCESS (mem)

VARIABLE memv: memory(0 to 15);

VARIABLE data: std_logic_vector(7 DOWNTO 0);

VARIABLE short_data: std_logic_vector(3 DOWNTO 0);

BEGIN

. . .

data := mem(956);

short_data := mem(931)(6 downto 3);

memv (12) := mem(189);

mem (932) <= data ;

mem (321)(5 DOWNTO 2) <= short_data;

mem (940) <= "0000" & short_data ;

END PROCESS;

. . .

END ARCHITECTURE;

February 2019 67

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Writing Testbenches
ENTITY detector110_tester IS END ENTITY;

--

ARCHITECTURE timed OF detector110_tester IS

SIGNAL aa, clock, rst, ww : std_logic := '0';

BEGIN

UUT1: ENTITY WORK.detector110 (procedural)

PORT MAP (aa, clock, rst, ww);

rst <= '1' AFTER 31 NS, '0' AFTER 54 NS;

clock <= NOT clock AFTER 7 NS WHEN NOW<=165 NS ELSE '0';

PROCESS BEGIN

WAIT FOR 23 NS; aa <= '1';

WAIT FOR 21 NS; aa <= '0';

WAIT FOR 19 NS; aa <= '1';

WAIT FOR 31 NS; aa <= '0';

WAIT;

END PROCESS;

PROCESS (ww) BEGIN

REPORT "Signal w changed to:"& std_logic'IMAGE(ww)&

" at " & TIME'IMAGE(NOW)

SEVERITY NOTE;

END PROCESS;

END ARCHITECTURE timed;

February 2019 68

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Writing Testbenches

 Testbench Waveform Results

February 2019 69

VHDL: Modular Design and

Synthesis of Cores and Systems

Copyright Z. Navabi, 2007

Summary

 This chapter presented:

 RT level description in the VHDL HDL language

 examples of synthesizable one-to-one hardware

correspondence

 introducesing some VHDL terminologies that are

needed for understanding the linguistics of VHDL

 How testbenches could be developed in VHDL and new

constructs of it in this part

