
Chapter 2

Logic Simulation with C/C++
Programming Language

Zainalabedin Navabi

1© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

2© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier generic modeling

• Compatible scalar and vector

 Hierarchal Modeling of
Digital Components
• Wire functionalities

• Gate functionalities

• Polymorphic gate base

• Virtual functions

• Functions overwriting

• Flip flop description
hierarchal

3© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

• Containing Event Based
Timing

• To include in wires

• To include in gates

• Gate-based structures

• Gate pointers and objects

• Wire and gate vectors

 Inheritance in Logic
Structures
• A generic gate definition

• Gates to include timing

• Building structures from
objects

4© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier centric modeling

• Compatible scalar and vector

5© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

PE

PE

PE

Data Sorter

Data
Compress

Data
Memory

6© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

CPP Basics.h

CPP Basics.cpp

Namespace std

for cin and cout

main

statements

declarations

include

Header File

Source File

7© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

8© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier centric modeling

• Compatible scalar and vector

9© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

Group Type names Note on size/Precision

Character Types Char Exactly one byte in size. At least 8 bits

Integer Types (signed)

Signed Char Same size as char. At least 8 bits

Signed Int At least 16 bits

Integer Types (unsigned)

Unsigned Char Same size as char. At least 8 bits

Unsigned Int At least 16 bits

Floating-point Type

Float

Double Precision not less than float

Long Double Precision not less than float

Boolean Type Bool

Void Type Void No storage

declarations initialization

operations

Boolean Type.h

Boolean Type.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 10

Character Type.h

Character Type.cpp

Converts ‘0’ and

‘1’ to 0 and 1 for

Boolean operations
Macro declaration

Default case

statement

Procedural

statements:

If else

While

Switch case

for© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 11

Four Value System.h

Four Value System.cpp

Constant arrays

for converting

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 12

Four Value System.cpp

Conversion to string

for printing

Convert Integer value to

lv4 enumeration type

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 13

String Character.h

String Character.cpp

Bool is good for

logical operations

MIN Macro
Got a sequence of 1s

and 0s. Turn into

waveform

Equivalent to BIT

macro

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 14

String Character.cpp

Apply a certain

logic operation

Output the

waveform for

output sequence

Output the

waveform for

input sequence

MIN macro

calculating

output waveform

length

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 15

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 16

17© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier centric modeling

• Compatible scalar and vector

LogicGates.h

Primitives.h

Gate function

prototypes

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 18

Primitives.cpp

Function passing. Function

pointer is passed to logic

as an argument

Pass by

reference.

Value can be

returned via

this argument

Functions are

overloaded for

various type of

procedure and

vector format

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 19

LogicGates.h

Primitives.h

To use this function

with fewer arguments,

all arguments must

have default values

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 20

logicgates.cpp

Use logic function and

pass specific function

Full-adder implementation

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 21

logicgates.cpp

Calling full-adder

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 22

 Four-Value Logic System

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 23

CharacterFunctions.h

CharacterPrimitives.h

Using char for

easier and more

expressive in

and out instead

of directly input

logic value

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 24

Tri-state

And resolution

function

x 0 1 z

x x x x x

0 x 0 x 0

1 x x 1 1

z x 0 1 z

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 25

CharacterPrimitives.cpp

But the drawback

is that we have to

generate our own

logical functions.

This happens one

and can easily be

reused.

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 26

CharacterFunctions.cpp

multiplexer

Multiplexer

with OE

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 27

Arrays are

passed by

reference to

first location

VectorFunctions.h

VectorPrimitives.h

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 28

VectorPrimitives.cpp

Logic vectors

overloaded

basic

functions

Loop and index

need size

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 29

VectorFunctions.cpp

Read string and

turns it into an

array of bool

Array indexing

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 30

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 31

characterVectorPrimitives.h

Shows arrays of

characters

Char-based

primitives and

their vector

overloading

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 32

characterVectorPrimitives.cpp

Null character

marks the end

of the vector

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 33

characterVectorFunctions.cpp

8-Bit character vector

based mux

If fewer than 8-

bits are entered,

using cin

automatically

puts ‘\0’ at the

end of string

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 34

SequentialFunctions.h

CharacterPrimitives.h

DFFaLRhE =

D filp flop

active low

reset active

high enable

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 35

CharacterPrimitives.cpp

D flip flop with

asynchronous reset

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 36

01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

Moore 110 sequence detector

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 37

SequentialFunctions.cpp

File handling

Convert

string to

char.

Operations

in char

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 38

Indata.tst

Ain, reset, clock

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 39

outdata.tst

Clock by

clock

output

W and 2 bits of states

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 40

pointerPrimitives.h

Pointers

instead of

arrays

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 41

pointerPrimitives.cpp

And with Pointer

Arguments

Overloading AND

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 42

pointerPrimitives.cpp

Pointer referencing in

a multi bit multiplexer

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 43

pointerFunctionsFileData.cpp

Testing Multiplexers

using ifstream and

ofstream

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 44

Outdata.tst

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 45

46© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier centric modeling

• Compatible scalar and vector

timedPrimitives.h

Structure to

accommodate

time as well as

logic

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 47

timedPrimitives.cpp

And logic function

with timing

A more accurate

delay

propagation

requires the gate

function to be

aware of its

previous output

value

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 48

timedFunctions.cpp

Pointer referencing

Entered: 1011

ValuesS: 1011

Values: 1101

This method

starts from

bit 0 and

treat bit 0 as

logical LSB

value

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 49

timedFunctions.cpp

Full adder using timed logic

4 bit adder made of four FAs

FA FA FA FA

b0b1b2b3

a0a1a2a3

c0c1c2c3

sum0sum1sum2sum3

co

nBitAdder function using timed logic

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 50

timedFunctions.cpp

Char based adder

with tlogic

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 51

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 52

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 53

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 54

Operator overloading

for tlogic

timedOperators.h

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 55

timedOperators.cpp

Overloaded

Operators

for struct

type

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 56

timedFunction.cpp

Full adder

considers logic

and timing

Full adder

considers logic

and timing

There are

no inside

wires to

propagate

delay values

Full adder

using

Boolean

expressions

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 57

Logic delays that

are only taking

input delays into

account

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 58

59© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 Procedural Languages for
Hardware Modeling

 Types and Operators for
Logic Modeling

 Basic Logic Simulation
• Logic functions

• Function overloading

• Passing logic functions

• Using default values

• Building higher level
structures

• Handling 4-value logic

• Logic vector

• Sequential circuit modeling

• Using pointers for logic
vectors

 Enhanced logic simulation
with timing
• Using struct for timing and

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires
and Gates
• Gate classes

• Carrier centric modeling

• Compatible scalar and vector

class3Primitives.hMember

variable

Member

function

Inline

implementation

external

implementation

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 60

class3Primitives.cpp

OR class member

function

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 61

class3Functions.cpp

Full adder

function using

gate classes

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 62

class3Functions.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 63

A

B

*

*

A*b

ci

*

*
*

ABci

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 64

 Classes do not hold values. Since the lines are just pointers,

someone else has to declare them and allocate them.

 evl and out are combined and evl does both. Actually, since

the outputs are pointers they will just be updated by evl.

Every invocation of evl puts the internal output values on

the evl return value.

 Destructor is introduced.

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 65

class2PointerPrimitives.h

constructor
destructor

Gates only

process and

points to wires.

Wires as holders

of values and

transmitters

Character

Pointers

Wires are of

char type

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 66

class2PointerPrimitives.cpp

Pointers to wires

A processing

element has no

wire. A structure

has wires. Only

structures has

wires and those

are only for

internal wires

structuresstructures

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 67

class2PointerPrimitives.cpp

Order evl()

functions according

to logic

Structures also

have gates that

have no

internal wires

A

B sum

Co

Or

*xor1.ios()

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 68

class2PointerPrimitives.cpp

Port association

Only evl()

functions must be

ordered

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 69

class2PointerFunctions.cpp

Shows main for full

adder and half

adder functions

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 70

timedLogicPrimitives.h

They have put

and get for

accessing their

value and event

time
Wires have

access

function to

activityCou

nt

Wires have

constructor

for value and

event time.

Declare wire

to contain

more

information

than just logic

value

EventTime to

propagate

delay

ActivityCount

to carry

power

consumption

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 71

timedLogicPrimitives.h

Xor

constructor

just ties port

pointers to

wires

O1 is a

pointer. This

pointer is tied

to pointer of w

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 72

timedLogicPrimitives.h

Full adder constructor

ties ports of the full

adder to external wires

and initialize internal

wires

Then It has evl()

function that call

gate classes in

proper order

Full adder class

definition declares

gates and internal

wires

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 73

timedLogicPrimitives.h

half adder constructor

ties ports of the full

adder to external wires

and initialize internal

wires

Then It has evl()

function that call

gate classes in

proper order

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 74

timedLogicUtilities.h

For implementing this

we need several utility

functions. For inbit and

outbit to get time and

value for wires

timedLogicUtilities.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 75

timedLogicPrimitives.cpp

If output has changed, the

last event time on output is

the larger of the inputs

plus gate delay

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 76

timedLogicPrimitives.cppLogic part

Event

part(timing)

Activity

part(power) Retain last

event and last

value

Logic part

Event

part(timing)

Activity

part(power)

Event

part(timing)

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 77

timedLogicPrimitives.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 78

timedLogicFunctions.cpp

FA

A

B

a

b

C ci

sum

carry

1D

Rrst

Q

C1

clk

Serial Adder

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 79

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 80

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 81

timedVectorLogicPrimitives.h

Main

difference

with wire

Last value for

timing

calculation

Wire vector has an

event time for a

group of wires and

an activityCount for

a group of wires.

This model is not

accurate since all

individual wires

are treated the

same

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 82

timedVectorLogicPrimitives.h

Utility for

indivisual

wires

Utility for

individual

wires

Utility for

arrays

Utility for

arrays

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 83

Adding \0 to make it

compatible with the c++

predefined string class

Evl() function for wireV. Since

they are clusters, individual

delay and power do not apply

timedVectorLogicPrimitives.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 84

timedVectorLogicFunctions.cpp

Vectors have

character pointer

instead of char

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 85

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 86

 Hierarchal Modeling of
Digital Components
• Wire functionalities

• Gate functionalities

• Polymorphic gate base

• Virtual functions

• Functions overwriting

• Flip flop description
hierarchal

87© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

• Containing Event Based
Timing

• To include in wires

• To include in gates

• Gate-based structures

• Gate pointers and objects

• Wire and gate vectors

 Inheritance in Logic
Structures
• A generic gate definition

• Gates to include timing

• Building structures from
objects

InheritedLogicClassPrimitives.h

An inherited

class that

does not

have its own

evl() can

depend on

the base

class

Different constructors

for 2-input and 1-input

gates and no

initailization

Timing activity

functions for 1

and 2 input

gates

Evl() is needed for

each gate. Each gate

instance use its own

evl() function

All gates

inherit from

gate class

Accessible by

gate classes

that are

inherited from

gates

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 88

InheritedLogicClassPrimitives.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 89

inheritedLogicClassPrimitives.cpp

Calculate output

value and call

timing activity at

gates

No evl() for

not to use

that of

gates

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 90

inheritedLogicClassPrimitives.cpp

Full adder uses

inherited gates.

Wiring is done

here.

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 91

Object of

xors is of

xor type

inheritedLogicClassPrimitives.cpp

Evl() of full

adder order the

gates

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 92

inheritedLogicClassFunctions.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 93

 Hierarchal Modeling of
Digital Components
• Wire functionalities

• Gate functionalities

• Polymorphic gate base

• Virtual functions

• Functions overwriting

• Flip flop description
hierarchal

94© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

• Containing Event Based
Timing

• To include in wires

• To include in gates

• Gate-based structures

• Gate pointers and objects

• Wire and gate vectors

 Inheritance in Logic
Structures
• A generic gate definition

• Gates to include timing

• Building structures from
objects

95© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

96© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

Wire class

has wire

identifier

and static

number of

wires

Any new wire

increments number of

wires

PolymorphismLogicClassesPrimitives.h

Only a copy of it is

generated for every

instance of wire

PolymorphismLogicClassesPrimitives.h

Gates constructor

assigns an id and

increments the gate

count

Virtual can be overwritten by

classes that inherit from it. If not

overwritten, the same evl() of

gates will be used for an

inherited class

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 97

Each gate just uses the

constructor of gates and

declares member

functions to overwrite evl()

and prob() of gates

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 98

PolymorphismLogicClassesPrimitives.h

Static initialization

must be done as

member functions are

defined

Static initialization

must be done as

member functions are

defined

Like a one

input buffer

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 99

PolymorphismLogicClassesPrimitives.cpp

DFF is inherited

from flip flop

PolymorphismLogicClassesPrimitives.cpp

Redefine virtual

functions of gate

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 100

PolymorphismLogicClassesPrimitives.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 101

PolymorphismLogicClassesFunctions.cpp

Base-pointer type

compatibility

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 102

PolymorphismLogicClassesPrimitives.h

Pure virtual functions

First_Level Derived

flip-flop classes

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 103

DFFsR is inherited

from DFF

PolymorphismLogicClassesPrimitives.cpp

Basic DFF with

synchronous reset

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 104

Inherited from DFF.

Same members but

assigns value to

existing rst of flip

flop
No evl(), so

uses the one of

DFF

Second Level

Derivation

PolymorphismLogicClassesPrimitives.h
Third Level

derivation

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 105

PolymorphismLogicClassesPrimitives.cpp

DFFsRE calls

DFFsR when

value is one

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 106

PolymorphismLogicClassesPrimitives.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 107

PolymorphismLogicClassesFunctions.cpp

Pointer

compatibility

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 108

PolymorphismLogicClassesFunctions.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 109

110© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

This chapter presented:

 Procedural Languages for Hardware Modeling
 Types and Operators for Logic Modeling
 Basic Logic Simulation
 Enhanced logic simulation with timing
 More Functions for Wires and Gates
 Inheritance in Logic Structures
 Hierarchal Modeling of Digital Components

111© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

 © 2015, Zainalabedin Navabi, System-Level Design
and Modeling: ESL Using C/C++, SystemC and TLM-
2.0, ISBN-13: 978-1441986740, ISBN-10:
144198674X

 Slides prepared by Hanieh Hashemi, ECE graduate
student

