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 Procedural Languages for 
Hardware Modeling

 Types and Operators for 
Logic Modeling 

 Basic Logic Simulation
• Logic functions 

• Function overloading

• Passing logic functions

• Using default values

• Building higher level 
structures

• Handling 4-value logic

• Logic vector 

• Sequential circuit modeling

• Using pointers for logic 
vectors

 Enhanced logic simulation 
with timing
• Using struct for timing and 

logic

• Gates that handle timing

• Utility functions

• Timing in logic structures

• Overloading logical operators

• Using Boolean expressions

 More Functions for Wires 
and Gates
• Gate classes

• Carrier generic modeling

• Compatible scalar and vector



 Hierarchal Modeling of 
Digital Components 
• Wire functionalities 

• Gate functionalities

• Polymorphic gate base

• Virtual functions

• Functions overwriting

• Flip flop description 
hierarchal 

3© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++

• Containing Event Based 
Timing

• To include in wires 

• To include in gates

• Gate-based structures

• Gate pointers and objects

• Wire and gate vectors

 Inheritance in Logic 
Structures
• A generic gate definition

• Gates to include timing

• Building structures from 
objects
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PE

PE

PE

Data Sorter

Data 
Compress

Data 
Memory
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CPP Basics.h

CPP Basics.cpp

Namespace std

for cin and cout

main

statements

declarations

include

Header File

Source File
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Group Type names Note on size/Precision

Character Types Char Exactly one byte in size. At least 8 bits

Integer Types (signed) 

Signed Char Same size as char. At least 8 bits

Signed Int At least 16 bits

Integer Types (unsigned)

Unsigned Char Same size as char. At least 8 bits

Unsigned Int At least 16 bits

Floating-point Type

Float

Double Precision not less than float

Long Double Precision not less than float

Boolean Type Bool

Void Type Void No storage



declarations initialization

operations

Boolean Type.h

Boolean Type.cpp
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Character Type.h

Character Type.cpp

Converts ‘0’ and 

‘1’ to 0 and 1 for 

Boolean operations
Macro declaration

Default case 

statement

Procedural 

statements:

If else

While

Switch case
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Four Value System.h

Four Value System.cpp

Constant arrays 

for converting
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Four Value System.cpp

Conversion to string 

for printing

Convert Integer value to  

lv4 enumeration type
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String Character.h

String Character.cpp

Bool is good for 

logical operations

MIN Macro
Got a sequence of  1s 

and 0s. Turn into 

waveform

Equivalent to BIT 

macro
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String Character.cpp

Apply a certain 

logic operation

Output the 

waveform for 

output sequence

Output the 

waveform for 

input sequence

MIN macro 

calculating 

output waveform 

length 
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 Procedural Languages for 
Hardware Modeling

 Types and Operators for 
Logic Modeling 

 Basic Logic Simulation
• Logic functions 

• Function overloading

• Passing logic functions

• Using default values

• Building higher level 
structures

• Handling 4-value logic
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vectors
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with timing
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logic
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• Compatible scalar and vector



LogicGates.h

Primitives.h

Gate function 

prototypes
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Primitives.cpp

Function passing. Function 

pointer is passed to logic 

as an argument 

Pass by 

reference. 

Value can be 

returned via 

this argument

Functions are 

overloaded for 

various type of 

procedure and 

vector format 
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LogicGates.h

Primitives.h

To use this function 

with fewer arguments, 

all arguments must 

have default values 
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logicgates.cpp

Use logic function and 

pass specific function

Full-adder implementation
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logicgates.cpp

Calling full-adder
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 Four-Value Logic System
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CharacterFunctions.h

CharacterPrimitives.h

Using char for 

easier and more 

expressive in 

and out instead 

of directly input 

logic value
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Tri-state

And resolution 

function

x 0 1 z

x x x x x

0 x 0 x 0

1 x x 1 1

z x 0 1 z
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CharacterPrimitives.cpp

But the drawback 

is that we have to 

generate our own 

logical functions. 

This happens one 

and can easily be 

reused. 
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CharacterFunctions.cpp

multiplexer

Multiplexer 

with OE
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Arrays are 

passed by 

reference to 

first location

VectorFunctions.h

VectorPrimitives.h
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VectorPrimitives.cpp

Logic vectors 

overloaded 

basic 

functions

Loop and index 

need size
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VectorFunctions.cpp

Read string and 

turns it into an 

array of bool

Array indexing
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characterVectorPrimitives.h

Shows arrays of 

characters

Char-based 

primitives and 

their vector 

overloading
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characterVectorPrimitives.cpp

Null character 

marks the end 

of the vector
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characterVectorFunctions.cpp

8-Bit character vector 

based mux

If fewer than 8-

bits are entered, 

using cin

automatically 

puts ‘\0’ at the 

end of string
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SequentialFunctions.h

CharacterPrimitives.h

DFFaLRhE = 

D filp flop 

active low 

reset active 

high enable 
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CharacterPrimitives.cpp

D flip flop with 

asynchronous reset
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01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

Moore 110 sequence detector
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SequentialFunctions.cpp

File handling

Convert 

string to 

char. 

Operations 

in char
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Indata.tst

Ain, reset, clock
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outdata.tst

Clock by 

clock 

output

W and 2 bits of states
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pointerPrimitives.h

Pointers 

instead of 

arrays

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 41



pointerPrimitives.cpp

And with Pointer 

Arguments

Overloading AND
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pointerPrimitives.cpp

Pointer referencing in 

a multi bit multiplexer
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pointerFunctionsFileData.cpp

Testing Multiplexers 

using ifstream and 

ofstream
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Outdata.tst
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timedPrimitives.h

Structure to 

accommodate 

time as well as 

logic
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timedPrimitives.cpp

And logic function 

with timing

A more accurate 

delay 

propagation 

requires the gate 

function to be 

aware of its 

previous output 

value
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timedFunctions.cpp

Pointer referencing

Entered: 1011

ValuesS: 1011

Values: 1101

This method 

starts from 

bit 0 and 

treat bit 0 as 

logical LSB 

value
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timedFunctions.cpp

Full adder using timed logic

4 bit adder made of four FAs

FA FA FA FA

b0b1b2b3

a0a1a2a3

c0c1c2c3

sum0sum1sum2sum3

co

nBitAdder function using timed logic
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timedFunctions.cpp

Char based adder 

with tlogic
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Operator overloading 

for tlogic

timedOperators.h
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timedOperators.cpp

Overloaded 

Operators 

for struct 

type

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 56



timedFunction.cpp

Full adder 

considers logic 

and timing

Full adder 

considers logic 

and timing

There are 

no inside 

wires to 

propagate 

delay values

Full adder 

using 

Boolean 

expressions
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Logic delays that 

are only taking 

input delays into 

account
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class3Primitives.hMember 

variable

Member 

function

Inline 

implementation

external 

implementation
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class3Primitives.cpp

OR class member 

function
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class3Functions.cpp

Full adder 

function using 

gate classes
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class3Functions.cpp
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A

B

*

*

A*b

ci

*

*
*

ABci
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 Classes do not hold values. Since the lines are just pointers, 

someone else has to declare them and allocate them.

 evl and out are combined and evl does both. Actually, since 

the outputs are pointers they will just be updated by evl. 

Every invocation of evl puts the internal output values on 

the evl return value.

 Destructor is introduced.
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class2PointerPrimitives.h

constructor
destructor

Gates only 

process and 

points to wires.

Wires as holders 

of values and 

transmitters

Character 

Pointers

Wires are of 

char type
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class2PointerPrimitives.cpp

Pointers to wires

A processing 

element has no 

wire. A structure 

has wires. Only 

structures has 

wires and those 

are only for 

internal wires

structuresstructures
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class2PointerPrimitives.cpp

Order evl() 

functions according 

to logic

Structures also 

have gates that 

have no 

internal wires

A

B sum

Co

Or 

*xor1.ios() 
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class2PointerPrimitives.cpp

Port association

Only evl() 

functions must be 

ordered
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class2PointerFunctions.cpp

Shows main for full 

adder and half 

adder functions
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timedLogicPrimitives.h

They have put 

and get for 

accessing their 

value and event 

time
Wires have 

access 

function to 

activityCou

nt

Wires have 

constructor 

for value and 

event time.

Declare wire 

to contain 

more 

information 

than just logic 

value

EventTime to 

propagate 

delay

ActivityCount

to carry 

power 

consumption
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timedLogicPrimitives.h

Xor

constructor 

just ties port 

pointers to 

wires

O1 is a 

pointer. This 

pointer is tied 

to pointer of w
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timedLogicPrimitives.h

Full adder constructor 

ties ports of the full 

adder to external wires 

and initialize internal 

wires

Then It has evl() 

function that call 

gate classes in 

proper order

Full adder class 

definition declares 

gates and internal 

wires
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timedLogicPrimitives.h

half adder constructor 

ties ports of the full 

adder to external wires 

and initialize internal 

wires

Then It has evl() 

function that call 

gate classes in 

proper order

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 74



timedLogicUtilities.h

For implementing this 

we need several utility 

functions. For inbit and 

outbit to get time and 

value for wires

timedLogicUtilities.cpp

© 2014-2019, Zainalabedin Navabi - Logic Simulation with C/C++ 75



timedLogicPrimitives.cpp

If output has changed, the 

last event time on output is 

the larger of the inputs 

plus gate delay
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timedLogicPrimitives.cppLogic part

Event 

part(timing)

Activity 

part(power) Retain last 

event and last 

value

Logic part

Event 

part(timing)

Activity 

part(power)

Event 

part(timing)
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timedLogicPrimitives.cpp
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timedLogicFunctions.cpp

FA

A

B

a

b

C ci

sum

carry

1D

Rrst

Q

C1

clk

Serial Adder
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timedVectorLogicPrimitives.h

Main 

difference 

with wire 

Last value for 

timing 

calculation

Wire vector has an 

event time for a 

group of wires and 

an activityCount for 

a group of wires. 

This model is not 

accurate since all 

individual wires 

are treated the 

same  
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timedVectorLogicPrimitives.h

Utility for 

indivisual

wires

Utility for 

individual 

wires

Utility for 

arrays

Utility for 

arrays
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Adding \0 to make it 

compatible with the c++

predefined string class 

Evl() function for wireV. Since 

they are clusters, individual 

delay and power do not apply

timedVectorLogicPrimitives.cpp
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timedVectorLogicFunctions.cpp

Vectors have 

character pointer 

instead of char
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 Hierarchal Modeling of 
Digital Components 
• Wire functionalities 

• Gate functionalities

• Polymorphic gate base

• Virtual functions

• Functions overwriting

• Flip flop description 
hierarchal 
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• Containing Event Based 
Timing

• To include in wires 

• To include in gates

• Gate-based structures

• Gate pointers and objects

• Wire and gate vectors

 Inheritance in Logic 
Structures
• A generic gate definition

• Gates to include timing

• Building structures from 
objects



InheritedLogicClassPrimitives.h

An inherited 

class that 

does not 

have its own 

evl() can 

depend on 

the base 

class

Different constructors 

for 2-input and 1-input 

gates and no 

initailization

Timing activity 

functions for 1 

and 2 input 

gates

Evl() is needed for 

each gate. Each gate 

instance use its own 

evl() function

All gates 

inherit from 

gate class

Accessible by 

gate classes 

that are 

inherited from 

gates
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InheritedLogicClassPrimitives.cpp
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inheritedLogicClassPrimitives.cpp

Calculate output 

value and call 

timing activity at 

gates

No evl() for 

not to use 

that of 

gates
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inheritedLogicClassPrimitives.cpp

Full adder uses 

inherited gates. 

Wiring is done 

here.
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Object of 

xors is of 

xor type

inheritedLogicClassPrimitives.cpp

Evl() of full 

adder order the 

gates
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inheritedLogicClassFunctions.cpp
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Wire class 

has wire 

identifier 

and static 

number of 

wires

Any new wire 

increments number of 

wires

PolymorphismLogicClassesPrimitives.h

Only a copy of it is 

generated for every 

instance of wire



PolymorphismLogicClassesPrimitives.h

Gates constructor 

assigns an id and 

increments the gate 

count

Virtual can be overwritten by 

classes that inherit from it. If not 

overwritten, the same evl() of 

gates will be used for an 

inherited class
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Each gate just uses the 

constructor of gates and 

declares member 

functions to overwrite evl() 

and prob() of gates
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Static initialization 

must be done as 

member functions are 

defined

Static initialization 

must be done as 

member functions are 

defined

Like a one 

input buffer
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DFF is inherited 

from flip flop

PolymorphismLogicClassesPrimitives.cpp

Redefine virtual 

functions of gate
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PolymorphismLogicClassesPrimitives.cpp
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PolymorphismLogicClassesFunctions.cpp

Base-pointer type 

compatibility
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PolymorphismLogicClassesPrimitives.h

Pure virtual functions

First_Level Derived 

flip-flop classes
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DFFsR is inherited 

from DFF

PolymorphismLogicClassesPrimitives.cpp

Basic DFF with 

synchronous reset
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Inherited from DFF. 

Same members but 

assigns value to 

existing rst of flip 

flop
No evl(), so 

uses the one of 

DFF

Second Level 

Derivation

PolymorphismLogicClassesPrimitives.h
Third Level 

derivation
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PolymorphismLogicClassesPrimitives.cpp

DFFsRE calls 

DFFsR when 

value is one
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PolymorphismLogicClassesPrimitives.cpp
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PolymorphismLogicClassesFunctions.cpp

Pointer 

compatibility
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PolymorphismLogicClassesFunctions.cpp
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This chapter presented:

 Procedural Languages for Hardware Modeling
 Types and Operators for Logic Modeling 
 Basic Logic Simulation
 Enhanced logic simulation with timing
 More Functions for Wires and Gates
 Inheritance in Logic Structures
 Hierarchal Modeling of Digital Components 
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