
September 2017 1VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Chapter 1

Digital System Design

Automation with VHDL

September 2017 2VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Digital System Design Automation with

VHDL
1.1 Abstraction Levels

1.1.1 Abstraction Evolution

1.2 System Level Design

1.2.1 ESL Design

1.3 RTL Design

1.3.1 RTL Datapath Example

1.3.2 RTL Controller Example

1.3.3 RTL Design Flow

1.3.4 Design Entry

1.3.5 Testbench in VHDL

1.3.6 Design Validation

1.3.7 Compilation and Synthesis

1.3.8 Timing Analysis

1.3.9 Post-Synthesis Simulation

1.3.10 Hardware Generation

September 2017 3VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Digital System Design

Automation with VHDL

1.4 VHDL

1.4.1 VHDL Initiation

1.4.2 Existing Languages

1.4.3 VHDL Requirements

1.4.4 The VHDL Language

1.5 Summary

September 2017 4VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Abstraction Levels

 Abstraction Levels

Process

1

Process

2

Memory

System Level

RT Level

Gate Level

Transistor

Level

Abstraction Evolution

September 2017 5VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

September 2017 6VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

System Level Design

High level language

description for

complex and various

types of core

September 2017 7VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

ESL Design
 Start with RT level HDLs early in the curriculum

 Proper use of tools

 Treat computers as component

 Master RT level by the end of UG curriculum

 Teach integration

 Emphasis on embedded design

 C++ electronic modeling

 C++ based languages such as SystemC are used

 SystemC is used for core description

 SystemC–AMS is used for non-digital core description

 TLM is used for communications

 Channels at the lower levels

 Transport functions at the upper level

September 2017 8VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

 Any component that passes, holds
or processes data is a datapath
component

 Controller is the thinking part of
your machine

 You should decide how to wire
datapath components

 When designing datapath, don’t be
concerned about how control
signals are Issued

September 2017 9VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

September 2017 10VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Datapath Example

September 2017 11VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Controller Example

Signals that go to or

come from datapath

September 2017 12VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design Flow

Compilation and Synthesis

Analysis Synthesis Routing and placement

Y = a & d & w

w = a & b | c

Post-synthesis Simulation

Timing Analysis

1.6 ns2 ns

C++ Classes,

Language Representation

Behavioral

Simulation
Assertion Verification Formal Verification

Violation Report;

Time of Violation;

Monitor Coverage

Pass / Fail Report

Property Coverage

Counter Examples

Design Entry in VHDL

PROCESS (clk)

BEGIN

 IF (…) THEN . . .;

 ELSE . . .;

END PROCESS;

U1: comp1 . . .;

U2: comp2 . . .;

. . .

Un: compn . . .;

ARCHITECTURE a1

 lhs <= . . .

 PROCESS . . .

 U1: compi (. . .)

END ARCHITECTURE

Testbench in VHDL

ARCHITECTURE

tester

 generate data;

 process data;

END ARCHITECTURE;

Device Programming ASIC Netlist Custom IC Layout

EDIF

or other netlists1010...

HDL Based

Design Flow

September 2017 13VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Behavioral Simulation Assertion Verification Formal Verification

Violation Report;

Time of Violation;

Monitor Coverage

Pass / Fail Report

Property Coverage

Counter Examples

Design Entry in VHDL

PROCESS (clk)

BEGIN

 IF (…) THEN . . .;

 ELSE . . .;

END PROCESS;

U1: comp1 . . .;

U2: comp2 . . .;

. . .

Un: compn . . .;

ARCHITECTURE a1

 lhs <= . . .

 PROCESS . . .

 U1: compi (. . .)

END ARCHITECTURE

Testbench in VHDL

ARCHITECTURE

tester

 generate data;

 process data;

END ARCHITECTURE;

RTL Design Flow

 HDL Based Design Flow

Design Entry

Phase

September 2017 14VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

Analysis Synthesis Routing and placement

Y = a & d & w

w = a & b | c

Timing Analysis

1.6 ns2 ns

C++ Classes,

Language Representation

Behavioral Simulation Assertion Verification Formal Verification

Violation Report;

Time of Violation;

Monitor Coverage

Pass / Fail Report

Property Coverage

Counter Examples

RTL Design Flow

 HDL Based Design

Flow (Continued)

Presynthesis

Verification

September 2017 15VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

Analysis Synthesis Routing and placement

Y = a & d & w

w = a & b | c

Timing Analysis

1.6 ns2 ns

C++ Classes,

Language Representation

Behavioral Simulation Assertion Verification Formal Verification

Violation Report;

Time of Violation;

Monitor Coverage

Pass / Fail Report

Property Coverage

Counter Examples

RTL Design Flow

 HDL Based Design

Flow (Continued)

Synthesis Process

September 2017 16VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Post-synthesis Simulation

Timing Analysis

1.6 ns2 ns

Device Programming ASIC Netlist Custom IC Layout

EDIF

or other netlists1010...

Testbench in VHDL

ARCHITECTURE

tester

 generate data;

 process data;

END ARCHITECTURE;

RTL Design Flow

 HDL Based Design

Flow (Continued)

Postsynthesis

Verification

September 2017 17VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Post-synthesis Simulation

Timing Analysis

1.6 ns2 ns

Device Programming ASIC Netlist Custom IC Layout

EDIF

or other netlists1010...

Testbench in VHDL

ARCHITECTURE

tester

 generate data;

 process data;

END ARCHITECTURE;

RTL Design Flow

September 2017 18VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

RTL Design Flow

September 2017 19VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Design Entry

Design Entry

September 2017 20VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 The first step in the design of a digital system

 Describing the design in VHDL in a top-down hierarchical fashion

 Register Transfer Level (RTL): High-level VHDL designs usually
described at this level

 VHDL constructs used in RT level design:

 Sequential statements for high-level behavioral descriptions

 Signal assignments for representing logic blocks, bus assignments,
and bus and input/output interconnect specifications

 Instantiation statements for using lower-level components in an
upper-level design

Design Entry

September 2017 21VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Testbench in VHDL

Testbench in VHDL

September 2017 22VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Simulation and Test of a designed system functionality before
Hardware generation

 Detection of design errors and incompatibility of components used

 in the design

 By generation of a test data and observation of simulation results

 Testbench: A VHDL module

 Use of high-level constructs of VHDL for:

 Data Generation

 Response Monitoring

 Handshaking with the design

 Inside the Testbench: Instantiation of the design module

 Forms a simulation model together with the design, used by a
VHDL simulation engine

Testbench in VHDL

September 2017 23VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Design Validation

Design Validation

September 2017 24VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Design Validation

 An important task in any digital system design

 The process to check the design for any design flaws

 A design flaw due to:

 Ambiguous Problem Specifications

 Designer Errors

 Incorrect Use of Parts in the Design

 Can be done by:

 Simulation

 Assertion Verification

 Formal Verification

September 2017 25VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Design Validation

Design

Validation

Simulation
Assertion

Verification

Formal

Verification

September 2017 26VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Simulation

Design

Validation

Simulation
Assertion

Verification

Formal

Verification
Simulation

September 2017 27VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Simulation for design validation, done before a design is synthesized

 Also Referred to as RT level, or Pre-synthesis Simulation

 Simulation at RTL level is accurate to the clock level

 The advantage: its speed compared with simulations at the gate or

transistor levels

 The Required Test data: generated graphically using waveform editors,

or through a testbench

 Outputs of simulators:

 Waveforms (for visual inspection)

 Text for large designs for machine processing

Simulation

September 2017 28VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Using a Testbench or a Waveform Editor for Simulation

Testbench

Text,

VCD...

Waveform

Other forms

Simulation Model

Hierachical

Design

Description

Simulator

Waveform

Simulator

...

Simulation Model

Hierachical

Design

Description

Text,

VCD...

Waveform

Other forms

...

Stimuli

Inputs
Outputs

Two

alternatives

for defining

test input

data for a

simulation

engine

Simulation

September 2017 29VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 ENTITY counter4_tester IS END ENTITY;

 ARCHITECTURE timed OF counter4_tester IS

 SIGNAL r : std_logic;

 SIGNAL c : std_logic := '0';

 SIGNAL cnt : std_logic_vector (3 DOWNTO 0);

 BEGIN

 UUT1: ENTITY WORK.counter4 (procedural) PORT MAP (r, c, cnt);

 r <= '0', '1' AFTER 09 NS, '0' AFTER 17 NS,

 '1' AFTER 59 NS, '0' AFTER 67 NS;

 c <= NOT c AFTER 3.5 NS WHEN NOW <= 75 NS ELSE '0';

 END ARCHITECTURE timed;

Simulator

Testbench

Design to Simulate

 ENTITY counter4 IS

 PORT (Reset, Clk : IN std_logic;

 Count : OUT std_logic_vector (3 DOWNTO

0));

 END ENTITY;

 ARCHITECTURE procedural OF counter4 IS

 SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

 BEGIN

 PROCESS (Clk) BEGIN

 IF (Clk = '0' AND Clk'EVENT) THEN

 IF (Reset = '1') THEN cnt_reg <= "0000";

 ELSE cnt_reg <= cnt_reg + 1; END IF;

 END IF;

 END PROCESS;

 Count <= cnt_reg;

 END ARCHITECTURE procedural;

 VHDL Simulation with a Testbench

Testbench for the

Counter Circuit

VHDL Code

of a Counter

Circuit

The simulation

results in form

of a waveform

Simulation

September 2017 30VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 ENTITY counter4_tester IS END ENTITY;

 ARCHITECTURE timed OF counter4_tester IS

 SIGNAL r : std_logic;

 SIGNAL c : std_logic := '0';

 SIGNAL cnt : std_logic_vector (3 DOWNTO 0);

 BEGIN

 UUT1: ENTITY WORK.counter4 (procedural) PORT MAP (r, c, cnt);

 r <= '0', '1' AFTER 09 NS, '0' AFTER 17 NS,

 '1' AFTER 59 NS, '0' AFTER 67 NS;

 c <= NOT c AFTER 3.5 NS WHEN NOW <= 75 NS ELSE '0';

 END ARCHITECTURE timed;

 ENTITY counter4 IS

 PORT (Reset, Clk : IN std_logic;

 Count : OUT std_logic_vector (3 DOWNTO

0));

 END ENTITY;

 ARCHITECTURE procedural OF counter4 IS

 SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

 BEGIN

 PROCESS (Clk) BEGIN

 IF (Clk = '0' AND Clk'EVENT) THEN

 IF (Reset = '1') THEN cnt_reg <= "0000";

 ELSE cnt_reg <= cnt_reg + 1; END IF;

 END IF;

 END PROCESS;

 Count <= cnt_reg;

 END ARCHITECTURE procedural;

 VHDL Simulation with a Testbench (Continued)

SimulationThe testbench instantiates

the design under test, and as

part of the code of the

testbench it applies test data

to the instantiated circuit.

September 2017 31VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Simulator Validates the

functionality of the

counter circuit being

tested, Regardless of

clock frequency

 VHDL Simulation with a Testbench (Continued)

Simulation

September 2017 32VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Obviously, an actual hardware component behaves differently.

 Based on the timing and delays of the parts used, there will be a
nonzero delay between the active edge of the clock and the counter
output.

 Furthermore, if the clock frequency applied to an actual part is too fast
for propagation of values within the gates and transistors of a design,
the output of the design becomes unpredictable.

 The simulation shown here is not provided with the details of the
timing of the hardware being simulated.

 Therefore, potential timing problems of the hardware that are due to
gate delays cannot be detected.

 This is typical of a presynthesis or high-level behavioral simulation.

Simulation

September 2017 33VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Assertion Verification

Design

Validation

Simulation
Assertion

Verification

Formal

Verification
Assertion

Verification

September 2017 34VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Assertion Verification

 Aassertion Monitors: Used to continuously check for design properties

during simulation

 Instead of having to inspect simulation results manually or by

developing sophisticated testbenches

 Design Properties: Certain conditions have to be met for the design to

function correctly

 Assertion Monitors developed to assert that the Design Properties are

not violated

 Firing of an assertion verification: alerts the malfunctioning of design

according to the designer’s expectation

 Open verification library (OVL): provides a set of assertion monitors for

monitoring common design properties

September 2017 35VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Formal Verification

Design

Validation

Simulation
Assertion

Verification

Formal

Verification
Formal

Verification

September 2017 36VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Formal verification: The process of checking a design against certain

properties

 Examining the design to make sure that the described properties by the

designer to reflect correct behavior of the design hold under all

conditions

 Property’s Counter Examples: Input conditions making a property to

fail

 Property coverage indicates how much of the complete design is

exercised by the property

Formal Verification

September 2017 37VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Compilation and Synthesis

Compilation

And Synthesis

September 2017 38VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

 Synthesis: The process of automatic hardware generation from a design

description that has an unambiguous hardware correspondence.

 A VHDL description for synthesis:

 Cannot include signal and gate level timing specifications, file

handling, and other language constructs that do not translate to

sequential or combinational logic equations

 Must follow certain styles of coding for combinational and

sequential circuits

 Compilation process has three phases:

 Analysis Phase

 Synthesis Phase

 Routing and Placement Phase

September 2017 39VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Design Specification

U1: comp1 . . .;

U2: comp2 . . .;

. . .

Un: compn . . .;

Analysis

Generic

Hardware

Generation

Logic

Optimization
Binding

Routing

and

Placement

Timing

Analysis

Target Hardware

Specification

Intermediate

Format

Synthesis

TPD= …; TSU= ...

Operating

Condition

Chip

Manufacturing

or

Device

Programming

PROCESS (clk)

BEGIN

 IF (…) THEN . . .;

 ELSE . . .;

END PROCESS;

ARCHITECTURE a1

 lhs <= . . .

 PROCESS . . .

 U1: compi (. . .)

END ARCHITECTURE

Compilation and Synthesis

 Compilation and Synthesis Process

Input: Hardware

description

consisting of

various levels of

VHDL

Output:

A detailed

hardware for

programming

an FPLD or

manufacturing

an ASIC

The compilation

process and a

graphical

representation for

each of the

compilation phase

outputs

September 2017 40VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

 Compilation and Synthesis Process (Continued)

Analysis Phase: Translates

various parts of the design to

an intermediate format.

Design Specification

U1: comp1 . . .;

U2: comp2 . . .;

. . .

Un: compn . . .;

Analysis

Intermediate

Format

PROCESS (clk)

BEGIN

 IF (…) THEN . . .;

 ELSE . . .;

END PROCESS;

ARCHITECTURE a1

 lhs <= . . .

 PROCESS . . .

 U1: compi (. . .)

END ARCHITECTURE

September 2017 41VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

 Compilation and Synthesis Process (Continued)

Synthesis Phase: Links all parts
together and generates the

corresponding logic.

Generic

Hardware

Generation

Logic

Optimization
Binding

Target Hardware

Specification

Synthesis

Has three different phases.

September 2017 42VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

 Compilation and Synthesis Process (Continued)

Routing and Placement Phase:
Places and routes components of

the target hardware, and
generates timing details.

Routing

and

Placement

Timing

Analysis

TPD= …; TSU= ...

Operating

Condition

Chip

Manufacturing

or

Device

Programming

September 2017 43VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Compilation and Synthesis

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
Binding

September 2017 44VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Analysis

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
Binding

Analysis

September 2017 45VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Analysis

 Before the complete design is turned into hardware

 Analyzing the design and generating a uniform format for all parts of it

 Also checks the syntax and semantics of the input VHDL code

September 2017 46VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Generic Hardware Generation

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
Binding

Generic Hardware

Generation

September 2017 47VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Generic Hardware Generation

 Generic Hardware Generation: Turning the design into a generic

hardware format such as a set of Boolean expressions or a netlist of

basic gates

September 2017 48VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Logic Optimization

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
Binding

Logic

Optimization

September 2017 49VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Logic Optimization:

 Reducing expressions with constant input

 Removing redundant logic expressions

 Two-level minimization

 Multilevel minimization that include logic sharing

 Output:

 Boolean expressions

 Tabular logic representations

 Primitive gate netlists

Logic Optimization

September 2017 50VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Binding

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
BindingBinding

September 2017 51VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Binding:

 Decide exactly what logic elements and cells are needed for the

realization of the circuit using information from target hardware

 Output is specific to the FPLD, ASIC, or custom IC being used

Binding

September 2017 52VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Routing and Placement

Compilation

and Synthesis

Routing and

Placement

Analysis
Generic Hardware

Generation

Logic

Optimization
Binding

Routing and

Placement

September 2017 53VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Decides on the placement of cells of the target hardware

 Determines wiring of inputs and outputs of the cells through wiring

channels and switching areas of the target hardware

 The output is specific to the hardware being used and can be used for

programming an FPLD or manufacturing an ASIC.

Routing and Placement

September 2017 54VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 An Example

Synthesis Run

 ENTITY counter4 IS

 PORT (Reset, Clk : IN std_logic; Count : OUT std_logic_vector (3 DOWNTO

0));

 END ENTITY;

 ARCHITECTURE procedural OF counter4 IS

 SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

 BEGIN

 PROCESS (Clk) BEGIN

 IF (Clk = '0' AND Clk'EVENT) THEN

 IF (Reset = '1') THEN cnt_reg <= "0000";

 ELSE cnt_reg <= cnt_reg + 1; END IF;

 END IF;

 END PROCESS;

 Count <= cnt_reg;

 END ARCHITECTURE procedural;

Synthesis Tool

 Target hardware specification

 List of primitive components

 - Flip-flops

 - Logic elements

 Timing specifications

 - Pin-to-pin timing

Design to Synthesize

An example of

a synthesis

run: The

counter circuit

is being

synthesized

Routing and Placement

September 2017 55VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 ENTITY counter4 IS

 PORT (Reset, Clk : IN std_logic; Count : OUT std_logic_vector (3 DOWNTO

0));

 END ENTITY;

 ARCHITECTURE procedural OF counter4 IS

 SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);

 BEGIN

 PROCESS (Clk) BEGIN

 IF (Clk = '0' AND Clk'EVENT) THEN

 IF (Reset = '1') THEN cnt_reg <= "0000";

 ELSE cnt_reg <= cnt_reg + 1; END IF;

 END IF;

 END PROCESS;

 Count <= cnt_reg;

 END ARCHITECTURE procedural;

Synthesis Tool

 Target hardware specification

 List of primitive components

 - Flip-flops

 - Logic elements

 Timing specifications

 - Pin-to-pin timing

Design to Synthesize

 An Example Synthesis Run (Continued)

VHDL Description

of the Design

Specification

of the Target

Hardware

Routing and Placement

September 2017 56VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 An Example Synthesis Run (Continued)

The output of

synthesis tool

A list of gates and flip-

flops available in the

target hardware and

their interconnections

Routing and Placement

September 2017 57VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Postsynthesis

Simulation

Post-synthesis Simulation

September 2017 58VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 After the Synthesis Phase a complete netlist of target hardware
components and their timings is generated.

 The generated netlist includes:

 The details of gates used for the implementation of the design

 Wiring delays and load effects on gates used in the postsynthesis
design

 The netlist output is made available in various netlist formats including
VHDL

 A Postsynthesis simulation checks:

 Timing issues

 Determination of a proper clock frequency

 Determination of race, and hazard considerations

 The behavior of a design as intended by the designer and its behavior
after postsynthesis simulation may be different due to delays of wires
and gates.

Post-synthesis Simulation

September 2017 59VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Timing Analysis

Timing

Analysis

September 2017 60VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 A part of the compilation process, or in some tools after the compilation

process

 Timing Analysis Phase generates:

 Worst-case delays

 Clocking speed

 Delays from one gate to another

 Required setup and hold times

 Results of timing analysis appear in Tables and/or Graphs

 The results is used by designers to decide on speed of their circuits.

Timing Analysis

September 2017 61VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

RTL Design

Flow

Hardware

Generation

Design Entry Testbench in VHDL

Design Validation
Compilation

and Synthesis

Postsynthesis

Simulation

Timing

Analysis

Hardware Generation

Hardware

Generation

September 2017 62VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Last stage in an automated VHDL-based design

 Generates a netlist for ASIC manufacturing, a program for programming

FPLDs, or layout of custom IC cells

Hardware Generation

September 2017 63VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

VHDL

VHDL

VHDL Initiation
Existing

Languages

VHDL

Requirements

The VHDL

Language

September 2017 64VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

VHDL Initiation

VHDL

VHDL Initiation
Existing

Languages

VHDL

Requirements

The VHDL

Language

VHDL Initiation

September 2017 65VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Existing Languages

VHDL

VHDL Initiation
Existing

Languages

VHDL

Requirements

The VHDL

Language

Existing

Languages

September 2017 66VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 AHPL

 CDL

 CONLAN

 IDL

 ISPS

 TEGAS

 TI-HDL

 ZEUS

Existing Languages

September 2017 67VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

VHDL Requirements

VHDL

VHDL Initiation
Existing

Languages

VHDL

Requirements

The VHDL

Language

VHDL

Requirements

September 2017 68VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Based on DoD requirements document:

 General Features

 Support for Design Hierarchy

 Library Support

 Sequential Statement

 Generic Design

 Type Declaration and Usage

 Use of Subprograms

 Timing Control

 Structural Specification

VHDL Requirements

September 2017 69VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

The VHDL Language

VHDL

VHDL Initiation
Existing

Languages

VHDL

Requirements

The VHDL

Language

The VHDL

Language

September 2017 70VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 A hardware description language with strong emphasis on concurrency

 Supports hierarchical description of hardware from system to gate or
even switch level

 Strong support at all levels for timing specification and violation
detection

 Provides constructs for generic design specification and configuration

 A VHDL design entity is defined as:

 An entity declaration

 Its associated architecture body

 Groups subprograms or design entities by use of packages.

 Configurations for customizing generic descriptions of design entities

 Supports libraries and contains constructs for accessing packages,
design entities, or configurations from various libraries.

The VHDL Language

September 2017 71VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

 Vendor specific VHDL libraries used for time specification of various
FPGA and ASIC libraries.

 Other libraries have specific packages for a certain design style
promoted by EDA manufacturers.

 The standard IEEE library: A library of packages for type definitions,
and logical operations.

 A typical VHDL design environment :

 An analyzer program

 Simulator

 Hardware synthesizer

 Test vector generator

 Physical design tool

The VHDL Language

September 2017 72VHDL: Modular Design and Synthesis of Cores and Systems Copyright Z. Navabi, 2007

Summary

 FPLD Design Flow

 This chapter presented:

 An overview of mechanisms, tools, and processes used for taking a

design from the design stage to a hardware implementation

 The history of VHDL evolution

 With this standard HDL, the efforts of tool developers, researchers,

and software vendors have become more focused, resulting in better

tools and more uniform environments.

