

UNIVERSITY OF TEHRAN

Electrical and Computer Engineering Department

ECE (8101) 432

Object Oriented Modeling of Electronic Circuits

Spring 97-98

Midterm Exam

 First Name: _________________________

 Last Name: _________________________

 Number: ___________________________

Grade:

 Problem 1. ______/ 25

 Problem 2. ______/ 25

 Problem 3. ______/ 25

 Problem 4. ______/ 25

 Chel-Dokhtar and Emaamzaadeh, Daamghaan, Iran, Dey 1397

 Total: ______/ 100

 Regulations:

* DO NOT USE LAPTOPS

* EXTRA SHEETS WILL NOT BE ACCEPTED

* THIS IS AN OPEN NOTE OPEN SLIDE EXAM

* YOU MUST SHOW COMPLETE WORK ON ALL PROBLEMS

* YOU HAVE EXACTLY 165 MINUTES FOR WORKING ON THIS TEST

* WHERE CODES REPEAT, USE OFG THREE DOTS IS ALLOWED TO

 IMPLY REPEATITYION

YOU ARE TRUSTED AND BY SIGNING HERE YOU ARE INDICATING

THAT THIS EXAM IS YOUR OWN WORK ONLY: Signature:

The first microprocessor, Intel 4004,

2250 transistors, 108Khz, 1971.

1. A Low Pass Filter (LPF) is used in an RF receiver as shown in in the RF block diagram below. You are to describe

a second-order low pass filter in SystemC-AMS as used in the block diagram shown. This RLC circuit uses L=470

mH, R=4.3 KΩ, and C=0.047 µF. The cutoff frequency of the filter is 1 KHz. Write the RLC circuit in SystemC-

AMS ELN model of computation. Enclose this in an SC_MODULE. Adjust the parameters of the design considering

the cutoff frequency.

2. Derive the Laplace transfer function of the LPF of Problem 1. A) Model this LTF in SystemC-AMS using TDF

model of computation described by the numerator and denominator coefficients. Since the cut off frequency of the

filter is 1 KHz set the sample rate of your TDF module to 0.10 ms. B) Enclose the description of Part A in an

sc_main and apply test data according to the input waveform shown below. Show the expected output of the filter

emphasizing on the timing of the output and not as much on the amplitude of the output waveform.

3. You are to describe a cosine calculator engine (CCE) that takes positive inputs between 0 and π/2 and

calculates the cosine of this input. Your desc ration should mimic its RTL handshaking and signaling. The

input and output of the cosine engine are real numbers. The description should match the signaling

described here, but the functionality should be described according to the algorithm shown below. This

means that you do not have to design the RT level hardware of the datapath.

The CCE will be ready to take its input from inCCE when its readyCCE output is 1. During this time

outCCE will have the result of the last cosine calculation. To start a new cosine calculation, a positive

pulse must be issued on the CCE’s startCCE input. At this time, CCE will start the calculation, de-assert

its readyCCE output, and when completed, it will assert its readyCCE output, while the outCCE will hold

the cosine calculation results. CCE performs the following for x between 0 and π.

A partial SystemVerilog description for implementation of functionality of CCE is shown below. Use this

as a suggestion or starting point.

Write the complete SystemC description of CCE.

Hint: you can use the first handshaking example described in class for adjusting the signaling of CCE. The

example was presented as introduction to SystemC channels.

expr = 1;

term = 1;

for (i = 1; i <=15; i=i+2) begin

 term = term × xin × (1 / i);

 term = term × xin × (1 / (i+1));

 expr = (negate) ? (expr-term) : (expr+term);

end

4. Write templated interfaces and a SystemC channel for a buffer channel with put(…) and get(…) functions.

The initiator invokes put(…) to put data into the channel. The data is only put in the channel if the channel

is empty. The target invokes get(…) to get the data placed in the channel. This happens if a data has been

placed in the channel that has not been used (i.e., not get) before. The put(…) and get(…) functions also

provide a timeout that will return with a -1 if the time allowed in the arguments of these functions elapses

without being able to put or get.

