
RTL Design
Amir Reza Nekooei

Electrical and Computer Engineering

School of Engineering Colleges, Campus 2
University of Tehran, 1450 North Amirabad, 14395-515 Tehran, Iran

Amirrezank@gmail.com

Abstract—In this assignment we design a sign integer divider in
register transfer level. First step is designing a datapath which
includes some components and second step is designing a
controller for proper function of this module. We use VHDL to
describe the hardware and verify our design.

Keywords— RTL, design, datapath, controller, divider, VHDL.

I. INTRODUCTION
The purposes of this assignment is designing and verifying

a sign integer divider. In implementation of this hardware we
use subtraction for division. Fig. 1 shows division algorithm
that implements with subtraction.

Fig. 1 Division algorithm that implement with subtraction

In this implementation, we design components of the

datapath and then design a controller for this datapath.
The remainder of this report is organized as follows.

Section II gives an overview of datapath. In section III, we
design controller. In section IV, we verify the design. Finally,
section V concludes the assignment.

II. DATAPATH
In this section we design datapath for sign integer divider.

For this purpose we need some components that listed below.

A. Simple Register
This component is used for sampling of input for divide

operation.

B. Subtracter
This component does subtract operation. In final step

output of this module is remainder.

C. Comparator
This module determines the last step of divide operation, in

this way, when divider is less than divisor the output of this
module is zero.

D. Counter
This module counts the number of time that subtraction

operation is executed and the output of this module in final
step is quotient.

E. Tristate
We use this module to prevent extra switching on output to

save power.

 In Fig. 2 we show datapath that implements divide
operation so that first go signal should be one and when go is
zero MUX selects Abus and puts this on outMux. After one
clock cycle A and B without sign bit is put on subtracter and
comparator input. If B input is equal to zero (BIsZero = ‘1’),
ready signal becomes one and Qbus and Rbus remain high
impedence, otherwise MUX selects ASubB and puts this on
outMux. This operation would be executing until output of
Comparator becomes zero. In this moment SimpleReg:A
output is remainder and Counter output is quotient. With
finished divide operation ready signal is one for one clock
cycle.

III. CONTROLLER
In this section we design a controller for divider. For this

work we use Hoffman model. In Fig. 3 control data flow of
the finite state machine module is shown. This module
activates all control signals and manages data flow of our
datapath.

In Fig. 4 we show state diagram of finite state machine.

This is a mealy machine that its order of inputs and outputs of
finite state machine is shown in (1).

(go,rsltCMP)/ (ready, selMux, loadInputA, loadinputB,
parLopadR, parloadQ, rstCount, upCount) (1)

Fig. 2 Datapath

Fig. 3 Finite state machine

Fig. 4 state diagram of finite state machine

IV. DESIGN VERIFICATION
In this section we simulate hardware and describe

functionality of sign integer divider. First, in implementing
this hardware we assume that the remainder can be negative.
If we had assumed remainder is always positive, a small
change is needed to deal with this assumption. Second, in start
of divide operation we assume that go signal is high; the
divider starts sampling from input and when go signal
changed to low divide operation starts. Third, we assume
when divide operation is done ready signal would be high for
one clock cycle. Also we assume the number is sign
magnitude system for sign calculation and implement
hardware in N-configuration. It means this divider can work in
any number of bits for input data.

In simulation we write a test bench that read test data from

a file, in this way, all inputs and desired outputs get from file

and then inputs data are fed to the hardware and outputs are
compared with desired outputs. If the result is wrong a
massage will be printed in transcript.

To generate test data we write a program in MATLAB that

generates proper inputs and outputs of test hardware.

All VHDL files and their functionality are described as

follows:
• Trunk/ComparatorN
This module compares two N-bit numbers. If AInput is

more than BInput, rsltCMP changes to one otherwise rsltCMP
stays zero.

• Trunk/CounterN
This module is an N-bit counter. If upCount is one with

positive edge of clock parOut would be increased.
• Trunk/FSM
This module is a finite state machine.
• Trunk/ Multiplexer2to1N
This module is a multiplexer 2to1 that each its line is N-bit.
• Trunk/ SimpleRegisterN
This module is a simple register. If parLoad is one then

parOut is parIn.
•Trunk/ SubtractorN

This module is a subtracter.
• Trunk/ TriStateN
This module is a tristate buffer which its input and output is

N-bit.
• Trunk/ SignIntegerDividerN
In this module all components are connected together.

V. CONCLUSIONS
In this document we design a sign integer divider in RTL.

First, we design the datapath and then design the controller.
To verify design we write a test bench in VHDL [1] and read
test data from file and compare outputs with desired value.

REFERENCES

[1] Z.Navabi, VHDL: Modular Design and Synthesis of Cores and Systems,
3nd ed., McGraw-Hill Professional, 2007.

