
 
 

VHDL Tutorial: Learn by Example  

-- by Weijun Zhang, July 2001 

 
 
 

Typical Combinational Components  
 

The following behavior style codes demonstrate the concurrent and sequential capabilities 
of VHDL. The concurrent statements are written within the body of an architecture. They 
include concurrent signal assignment, concurrent process and component instantiations (port 
map statement). Sequential statements are written within a process statement, function or 
procedure. Sequential statement includes case statement, if-then-else statement and loop 
statement. 

 
Multiplexor Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
Synthesis 
Schematic 

Decoder Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

Adder Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

Comparator Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

ALU Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

Multiplier Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

 
Latch & Flip-Flops  

 
Besides from the circuit input and output signals, there are normally two other important 
signals, reset and clock, in the sequential circuit. The reset signal is either active-high or 
active-low status and the circuit status transition can occur at either clock rising-edge or 
falling-edge. Flip-Flop is a basic component of the sequential circuits. 

 
Simple Latch Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
D Flip-Flop Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
JK Flip-Flop Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
 

 
 
 



Typical Sequential Components  
 

Typical sequential components consist of registers, shifters and counters. The concept of 
generics is often used to parameterize these components. Parameterized components make 
it possible to construct standardized libraries of shared models. In the behavioral 
description, the output transitions are generally set at the clock rising-edge. This is 
accomplished with the combination of the VHDL conditional statements (clock'event and 
clock='1'). During the testbench running, the expected output of the circuit is compared 
with the results of simulation to verify the circuit design. 

 
Register Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
Synthesis 
Schematic 

Structural 
Simulation 

Shift 
Register 

Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

Structural 
Simulation 

Counter Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

Structural 
Simulation 

 
Sequential Logic Design  

 
The most important description model presented here may be the Finite State Machine 
(FSM). A general model of a FSM consists of both the combinational Logic and sequential 
components such as state registers, which record the states of circuit and are updated 
synchronously on the rising edge of the clock signal. The output function computes the 
various outputs according to different states. Another type of sequential model is the 
memory module, which usually takes a long time to be synthesized due to the number of 
design cells. 

 
FSM 

Model 
Behavior 

Code 
Test 

Bench 
Behavior 

Simulation 
Synthesis 
Schematic 

o Memories  

RAM 
Module 

Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

ROM 
Module 

Behavior 
Code 

Test 
Bench 

Behavior 
Simulation 

Synthesis 
Schematic 

 
 Behavior vs. RTL Synthesis (Y Chart) 

RTL stands for Register-Transfer Level. It is an essential part of top-down digital design 
process. Logic synthesis offers an automated route from an RTL design to a Gate-Level 
design. In RTL design a circuit is described as a set of registers and a set of transfer 
functions describing the flow of data between the registers, (ie. FSM + Datapath). As an 
important part of a complex design, this division is the main objective of the hardware 
designer using synthesis. The Synopsys Synthesis Example illustrates that the RTL 
synthesis is more efficient than the behavior synthesis, although the simulation of previous 
one requires a few clock cycles.   
 

GCD 
Caculator 

Behavior 
Code 

RTL Code 
(FSM+D) 

Comparison  



Following section illustrates the RTL (FSM+Datapath) method further using several design 
examples. 

 
 

Custom Single-Purpose Processor Design  
 

The first three examples illustrate the difference between RTL FSMD model (Finite State 
Machine with Datapath buildin) and RTL FSM + DataPath model. From view of RT level 
design, each digital design consists of a Control Unit (FSM) and a Datapath. The datapath 
consists of storage units such as registers and memories, and combinational units such as 
ALUs, adders, multipliers, shifters, and comparators. The datapath takes the operands 
from storage units, performs the computation in the combinatorial units, and returns the 
results to the storage units during each state. This process typically takes one or two clock 
cycles. 

Data-flow (looks more like an Algorithm) modeling is presented in the fourth example. The 
FIR digital filter algorithm is simulated and synthesized using VHDL. A comparison of the 
coding styles between the RTL modeling and Algorithm level modeling highlights the 
different techniques. 

o GCD Calculator  

FSMD 
Modeling 

RTL 
Code 

Test 
Bench 

RTL Code 
Simulation 

Synthesis 
Schematic 

FSM + 
Datapath 
Modeling 

RTL 
Code 

Test 
Bench 

RTL Code 
Simulation 

Synthesis 
Schematic 

o ISA Bus Interface  

FSM + 
Datapath 
Modeling 

RTL 
Code 

Test 
Bench 

RTL Code 
Simulation 

Synthesis 
Schematic 

 

o FIR Digital Filter (DSP Example) 

Data-
Flow 

Modeling 
Behavior 

Code 
Test 

Bench 
Behavior 

Simulation(1,2) 
Synthesis 
Schematic 

 
 

 


