
A Stream Cipher Proposal: Grain-128
Martin Hell, Thomas Johansson, Alexander Maximov

Department of Information Technology
Lund University, Sweden

E-mail: {martin,thomas,movax}@it.lth.se

Willi Meier
FH Aargau

CH-5210 Windisch, Switzerland
E-mail: meierw@fh-aargau.ch

Abstract— A new stream cipher, Grain-128, is proposed. The
design is very small in hardware and it targets environments
with very limited resources in gate count, power consumption,
and chip area. Grain-128 supports key size of 128 bits and IV
size of 96 bits. The design is very simple and based on two shift
registers, one linear and one nonlinear, and an output function.

I. I NTRODUCTION

Symmetric cryptographic primitives for encryption are di-
vided into block ciphers and stream ciphers. While design
principles and security of block ciphers are quite well un-
derstood, stream cipher design still requires much research.
Since block ciphers can be turned into stream ciphers, using
OFB or CFB mode, there has been some debate whether
stream ciphers are useful at all. The general opinion seems
to be that pure stream ciphers are still interesting for two
reasons. First, they can be designed to allow much faster
keystream generation in software than a block cipher in stream
cipher mode. Second, they can be designed to be smaller in
hardware. Hence, for a stream cipher to be interesting it must
either be very fast in software or very small in hardware.
Otherwise, e.g., AES in OFB or CFB mode would be a more
attractive option for a user. This opinion has been reflected
by the eSTREAM project [1], which is an effort to identify
new stream ciphers that might be interesting for widespread
adoption. The eSTREAM project focuses on stream ciphers
satisfying one or both of the above mentioned criteria.

The encryption operation in a binary additive stream cipher
is simple. The keystream is binary xored with the plaintext to
form the ciphertext. Similarly, decryption is done by xoring
the same keystream with the ciphertext to obtain the original
plaintext. The most important property of a stream cipher isthe
resistance against different attacks. It should not be possible
to recover the initial state of the cipher and the generated
keystream should be indistinguishable from a truly random
sequence. There are several ways to construct a stream cipher.
A common building block is a linear feedback shift register
(LFSR). These have several statistical properties that coincide
with the statistical properties of truly random strings. However,
since the generation of new symbols is linear, some additional
building block is needed in order to remove the linearity.
Irregular clocking, nonlinear filters and decimation algorithms
are commonly used to introduce nonlinearity in the keystream.

The purpose of this paper is to propose a 128-bit version
of the stream cipher Grain. Grain is a binary additive stream
cipher. The previous version, which is denoted Grain Version

1 [2], targets applications which have very limited hardware
resources. Grain Version 1 supports a key size of 80 bits (as
specified in eSTREAM), which is not feasible to exhaustively
search with modern computers. Recent research in time-
memory-data trade-off attacks suggests that it is possibleto
mount an attack with complexityO(2K/2) where K is the
size of the key. In this scenario the attacker has a collection
of 2K/2 plaintexts encrypted under different keys and the
aim of the attack is to find one of these keys. In this attack
scenario 80 bit key size is not enough since an attack would
have complexityO(240). Several researchers have recently
expressed the opinion that 128 bit keys is a minimum in secure
applications.

Grain-128 is designed to meet this requirement while pre-
serving the advantages of Grain Version 1. It supports key
size of 128 bits and IV size of 96 bits. The cipher is still
very small and easy to implement in hardware. Furthermore,
it is possible, and easy, to increase the speed at the expense
of more hardware. This is a distinguishing feature of the
Grain family of stream ciphers and is not explicitly found
in many other ciphers. Grain-128 uses a linear feedback shift
register to ensure good statistical properties and to guarantee
a lower bound for the period of the keystream. To introduce
nonlinearity, a nonlinear feedback shift register (NFSR) is used
together with a nonlinear filter. The nonlinear filter takes input
from both shift registers.

An unpublished version of Grain, referred to as Grain Ver-
sion 0, was submitted to the eSTREAM project. This version
was successfully cryptanalysed by independent researchers.
All attacks were based on the same idea of making a linear
approximation of the nonlinear circuit. The conclusion from
this cryptanalysis is that the choice of one internal function
was unfortunate. By a small tweak, just adding a few variables
to the output function, the proposed attacks no longer worked.
The attacks proposed have given further theoretical ground
for the design principles of the Grain family. The functionsin
Grain-128 are constructed with this theory in mind. To the best
of our knowledge, there is no 128 bit cipher offering the same
security as Grain-128 and a smaller gate count in hardware.

The outline of the paper is as follows. In Section II we will
present the design parameters of Grain-128 and in Section III
the throughput and the possibility to increase the speed will
be discussed. In Section IV we will look at the security of
the cipher and based on this security evaluation the different
design choices will be explained in Section V. Since Grain-



128 is designed to be suitable in hardware environments
an estimation of the hardware complexity will be given in
Section VI. Section VII will conclude the paper.

II. D ESIGN DETAILS

This section specifies the details of the design. A theoretical
motivation for the design choices will be given in Section V.
An overview of the different blocks used in the cipher can be
found in Fig. 1 and the specification will refer to this figure.
The cipher consists of three main building blocks, namely
an LFSR, an NFSR and an output function. The content
of the LFSR is denoted bysi, si+1, . . . , si+127. Similarly,
the content of NFSR is denoted bybi, bi+1, . . . , bi+127. The
feedback polynomial of the LFSR, denotedf(x), is a primitive
polynomial of degree 128. It is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

To remove any possible ambiguity we also give the corre-
sponding update function of the LFSR as

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The nonlinear feedback polynomial of the NFSR,g(x), is the
sum of one linear and one bent function. It is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60+
+x61x125 + x63x67 + x69x101+
+x80x88 + x110x111 + x115x117.

Again, to remove any possible ambiguity we also write the
corresponding update function of the NFSR. In the update
function below, note that the bitsi which is masked with the
input to the NFSR is included, while omitted in the feedback
polynomial.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96+
+bi+3bi+67 + bi+11bi+13 + bi+17bi+18+
+bi+27bi+59 + bi+40bi+48 + bi+61bi+65+
+bi+68bi+84.

The 256 memory elements in the two shift registers represent
the state of the cipher. From this state, 9 variables are taken
as input to a Boolean function,h(x). Two inputs toh(x) are
taken from the NFSR and seven are taken from the LFSR.
This function is of degree 3 and very simple. It is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variablesx0, x1, x2, x3, x4, x5, x6, x7 and x8

correspond to the tap positionsbi+12, si+8, si+13, si+20,
bi+95, si+42, si+60, si+79 andsi+95 respectively. The output
function is defined as

zi =
∑

j∈A

bi+j + h(x) + si+93,

whereA = {2, 15, 36, 45, 64, 73, 89}.

f(x)g(x)

h(x)

NFSR LFSR

2 77

14 5 6

Fig. 1. An overview of the cipher.

f(x)g(x)

h(x)

NFSR LFSR

Fig. 2. The key initialization.

A. Key and IV Initialization

Before keystream is generated the cipher must be initialized
with the key and the IV. Let the bits of the key,k, be denoted
ki, 0 ≤ i ≤ 127 and the bits of the IV be denotedIVi, 0 ≤
i ≤ 95. Then the initialization of the key and IV is done as
follows. The 128 NFSR elements are loaded with the key bits,
bi = ki, 0 ≤ i ≤ 127, then the first 96 LFSR elements are
loaded with the IV bits,si = IVi, 0 ≤ i ≤ 95. The last 32
bits of the LFSR is filled with ones,si = 1, 96 ≤ i ≤ 127.
After loading key and IV bits, the cipher is clocked 256 times
without producing any keystream. Instead the output function
is fed back and xored with the input, both to the LFSR and
to the NFSR, see Fig. 2.

III. T HROUGHPUTRATE

Both shift registers are regularly clocked so the cipher will
output 1 bit/clock. Using regular clocking is an advantage
compared to stream ciphers which uses irregular clocking
or decimation of the output sequence, since no hardware



NFSR LFSR

Fig. 3. The cipher when the speed is doubled.

consuming output buffer is needed. Regular clocking is also
an advantage when considering side-channel attacks. It is
possible to increase the speed of the cipher at the expense
of more hardware. This is an important feature of the Grain
family of stream ciphers compared to many other stream
ciphers. Increasing the speed can very easily be done by just
implementing the small feedback functions,f(x) and g(x),
and the output function several times. In order to simplify
this implementation, the last 31 bits of the shift registers,
si, 97 ≤ i ≤ 127 and bi, 97 ≤ i ≤ 127 are not used in
the feedback functions or in the input to the output function.
This allows the speed to be easily multiplied by up to 32 if a
sufficient amount of hardware is available. For more discussion
about the hardware implementation of Grain-128, we refer
to section VI. An overview of the implementation when the
speed is doubled can be seen in Fig. 3. Naturally, the shift
registers also need to be implemented such that each bit is
shifted t steps instead of one when the speed is increased by
a factort. By increasing the speed by a factor 32, the cipher
will output 32 bits/clock. Since, in the key initialization, the
cipher is clocked 256 times, the possibilities to increase the
speed is limited to factors≤ 32 that are divisible by 256. The
number of clockings needed in the key initialization phase is
then256/t. Since the output and feedback functions are small,
it is quite feasible to increase the throughput in this way.

IV. SECURITY EVALUATION

The most important property of a stream cipher is its
resistance to different cryptanalytic attacks. This section will
give a small description of possible attacks. This results given
in this section is the basis for the specific design choices
behind the different functions and parameters used in Grain-
128.

A. Linear Approximations

Linear sequential circuit approximations was first introduced
by Golić, see [3]. It is shown that it is always possible to find

a linear function of output bits that is unbalanced. For linear
approximations, we study the structure of the Grain design
in general. We consider an arbitrary choice of functionsg(·),
h(·) andf(·). The number of taps taken from the two registers
in the functionh(·) is also arbitrary. Here, the functionf(·)
is a primitive generating polynomial used for the LFSR. A
Boolean nonlinear functiong(·) is applied to generate a new
state of the NFSR. Finally, the keystream is the output of
another Boolean functionh(·). Note that, to simplify notation,
the functionh(·) in this section also includes the linear terms
added in the output function.

The results in this section was first given in [4] as follows.
Let Ag(·) andAh(·) be linear approximations forg(·) andh(·)
with the biasesεg andεh, respectively. I.e.,

Pr{Ag(·) = g(·)} = 1/2 + εg, (1)

Pr{Ah(·) = h(·)} = 1/2 + εh. (2)

Then, there exists a time invariant linear combination of the
keystream bits and LFSR bits, such that this equation has the
bias

ε = 2(η(Ah)+η(Ag)−1) · εη(Ah)
g · ε

η(Ag)
h , (3)

whereη(a(·)) is the number of the NFSR state variables used
in some functiona(·). This bias can not immediately be used in
cryptanalysis since also the LFSR has to be taken into account.
However, as soon as the biasε is large, a distinguishing or
even a key-recovery attack can be mounted by e.g., finding
a low weight parity check equation for the LFSR. When we
talk about correlation attacks of different kinds, it has been
shown in [4] that the strength of Grain is directly based on
the difficulty of the general decoding problem (GDP), well-
known as a hard problem. A set of time-memory trade-off
solutions for the GDP is widely discussed in the literature,
e.g., in [5]–[9].

Since for any functiona(·) a biased linear approximation
Aa(·) can always be found, it means that Grain will always
produce biased samples from the keystream, according to (3).
An important issue is to choose the functionsg(·) and h(·)
such that that bias is extremely small to prevent any possible
attack faster than exhaustive search.

B. Algebraic Attacks

Algebraic attacks on stream ciphers have received much
attention recently since they can be very efficient if the
designer is not careful. A filter generator using only an LFSR
and a nonlinear Boolean output function,h(·), could be very
vulnerable to algebraic attacks, see [10]. In Grain-128, an
NFSR is used to introduce nonlinearity together with the
function h(·). Solving equations for the initial 256 bit state
is not possible due to the nonlinear update of the NFSR. The
algebraic degree of the output bit expressed in initial state bits
will be large in general and also varying in time. This will
defeat any algebraic attack on the cipher.



C. Time-Memory-Data Trade-off Attack

A generic time-memory-data trade-off attack on stream
ciphers costsO(2n/2), see [11], wheren is the number of
inner state variables in the stream cipher. In Grain-128, the
two shift registers are of size 128 each so the total number
of state variables is 256. Thus, the expected complexity of a
time-memory-data trade-off attack is not lower thanO(2128).

D. Fault Attacks

Fault attacks are among the strongest attacks possible on any
stream cipher. They were introduced in [12] and have shown to
be efficient against many known stream cipher constructions. It
is debatable to which extent these attacks are actually practical.
One scenario in a fault attack is to allow the adversary to apply
some bit flipping faults to one of the shift registers at his will.
The attacker will, however, not have total control over the
number of faults and the exact location of the faults. Neither
will he have full knowledge of the number and position of
the faults after the faults were introduced. An even stronger
assumption is that the adversary is able to flip exactly one bit,
but in a location which he can not control. He can also reset
the cipher and introduce a new fault. We make the strongest
assumption possible, namely that the adversary can introduce
one single fault in a location of the LFSR that he can somehow
determine. Note that this assumption may not be at all realistic.
The aim is to look at the input-output properties forh(·),
and to get information about the inputs from known input-
output pairs. As long as the difference does not propagate
to position bi+95 the difference that can be observed in the
output is coming only from inputs ofh(·) from the LFSR. If
the attacker is able to reset the cipher many times, each time
introducing a new fault in a known position that he can guess
from the output difference, then we can not preclude that he
will get information about a subset of state bits in the LFSR.
Considering the more realistic assumption that the adversary
is not able to control the number of faults that have been
inserted then it seems more difficult to determine the induced
difference from the output differences. It is also possibleto
introduce faults in the NFSR. These faults will never propagate
to the LFSR, but the faults introduced here will propagate
nonlinearly in the NFSR and their evolution will be harder to
predict. Thus, introducing faults into the NFSR seems more
difficult than into the LFSR.

V. DESIGN CHOICES

In this section we give the details behind the choices for the
parameters used in Grain-128. Section IV clearly shows that
a proper choice of design parameters is important.
Size of the LFSR and the NFSR.The size of the key in
Grain-128 is 128 bits. Because of the simple and generic time-
memory-data trade-off attack, the internal state must be atleast
twice as large as the size of the key. Therefore, we choose the
LFSR and the NFSR to be of size 128 bits.
Speed Acceleration.Although the binary hardware implemen-
tation of Grain is small and fast, its speed can still be increased

significantly. The functionsf(·), g(·), andh(·) can be imple-
mented several times, so that several bits can be produced in
parallel at the same time. In Grain-128 we explicitly allow
up to 32 times speed acceleration. Many software oriented
ciphers are word based with a word size of 32 bits. These
ciphers output 32 bits in every clock or iteration. If needed,
Grain-128 can also be implemented to output 32 bits/clock.
For a simple implementation of this speed acceleration the
functionsf(·), g(·), andh(·) should not use variables taken
from the first 31 taps of the LFSR and the NFSR. Obviously,
speed acceleration is a trade-off between speed and hardware
complexity. Speed can additionally be increased even more,
by allowing the internal state to be increased proportionally.
For more discussion on the throughput, see Section III.
Choice off(·). This function is the generating polynomial for
the LFSR, thus, it must be primitive. It has been shown (in
e.g., [13]) that if the functionf(·) is of low weight, there exist
different correlation attacks. Therefore, the number of taps to
be used for the generating functionf(·) should be larger than
five. A large number of taps is also undesirable due to the
complexity of the hardware implementation.
Choice of g(·). This Boolean function is used for the NFSR,
generating a nonlinear relation of the state of the register. The
design of this function must be carefully chosen so that the
attack given in Section IV-A will not be possible. Recall that
the bias of the output will depend on the number of terms
in the best linear approximation ofg(·). It will also depend
on the bias of this approximation. To increase the number of
terms in the best linear approximation, the resiliency of the
function must be high. On the other hand, to have as small
bias as possible in the best approximation, the function should
have high nonlinearity. It is well known that a bent function
has the highest possible nonlinearity. However, bent functions
can not be balanced. In order to have both high resiliency
and nonlinearity, a highly resilient (linear) function is used
together with a bent function. The bent functionb(·) chosen
is the function

b(x) = x0x1 +x2x3 +x4x5 +x6x7 +x8x9 +x10x11 +x12x13.

This function has nonlinearity 8128. To increase the resiliency,
5 linear terms are added to the function. This will result
in a balanced function with resiliency 4 and nonlinearity
25 · 8128 = 260096. This is an easy way to construct func-
tions with high resiliency and nonlinearity. Another important
advantage of this function is that it is very small and cheap to
implement in hardware. The best linear approximation is any
linear function using at least all the linear terms. There are
214 such functions and they have biasεg = 2−8.
Choice of output function. The output function consists of
the functionh(x) and terms added linearly from the two shift
registers. This guarantees that the output will depend on the
state of both registers. The functionh(x) takes input from
both the LFSR and the NFSR. Similar to the functiong(·), the
bias of the output will depend on the number of terms in the
best linear approximation of this function and also the biasof
this approximation. Hence, this function has the same design



TABLE I

THE GATE COUNT USED FOR DIFFERENT FUNCTIONS.

Function Gate Count
NAND2 1
NAND3 1.5
XOR2 2.5
D flip flop 8

TABLE II

THE ESTIMATED GATE COUNT IN AN ACTUAL IMPLEMENTATION.

Gate Count Speed Increase
Building Block 1x 2x 4x 8x 16x 32x

LFSR 1024 1024 1024 1024 1024 1024
NFSR 1024 1024 1024 1024 1024 1024
f(·) 12.5 25 50 100 200 400
g(·) 37 74 148 296 592 1184

Output func 35.5 71 142 284 568 1136

Total 2133 2218 2388 2728 3408 4768

criteria asg(·). The functionh(x) has nonlinearity 240 and
since in total 8 variables are added linearly the output function
has in total nonlinearity28 · 240 = 61440. The functionh(x)
is not balanced and the best linear approximations have bias
εh = 2−5. There are in total 256 linear approximations with
this bias.

VI. H ARDWARE COMPLEXITY

The Grain family of stream ciphers is designed to be very
small in hardware. In this section we give an estimate of
the gate count resulting from a hardware implementation of
the cipher. The gate count for a function depends on the
complexity and functionality. The numbers are no natural
constants and will depend on the implementation in an actual
chip. Usually, the gate count is based on a 2 input nand gate
which is defined to have gate count 1. Hence, the gate count
can be seen as the equivalent number of nand gates in the
implementation. Table I lists the equivalent gate count forthe
building blocks used in our estimation.

The total gate count for the different functions can be seen
in Table II. This is just an estimate and the numbers are not
exact, e.g., the multiplexers needed in order to switch between
key/IV loading, initialization and keystream generation are
not included in the count. Also, two extra xors are needed
in key initialization mode. However, excluding these things
results in insignificant deviations from the real values. The
exact number of gates needed for each function will depend
on the implementation anyway.

VII. C ONCLUSION

A new stream cipher, Grain-128, has been presented. The
design is a new member in the family of Grain stream ciphers.
The size of the key is 128 bits and the size of the IV
is 96 bits. The design parameters has been chosen based
on theoretical arguments for linear approximations and other
possible attacks. Grain-128 is very well suited for hardware

environments where low gate count, low power consumption
and small chip area are important requirements. One can very
easily increase the speed of the cipher at the expense of extra
hardware. To our knowledge, there is no 128 bit cipher offering
the same security as Grain-128 and a smaller gate count in
hardware.

ACKNOWLEDGMENT

The fourth author is supported by Hasler Foundation
www.haslerfoundation.ch under project number 2005.

REFERENCES

[1] ECRYPT, “eSTREAM: ECRYPT Stream Cipher Project, IST-2002-
507932,” Available at http://www.ecrypt.eu.org/stream/.

[2] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for
constrained environments.”International Journal of Wireless and Mobile
Computing, Special Issue on Security of Computer Network and Mobile
Systems., 2006.

[3] J. Golić, “Intrinsic statistical weakness of keystream generators,” in
Advances in Cryptology—ASIACRYPT’94, 1994, pp. 91–103.

[4] A. Maximov, “Cryptanalysis of the “Grain” family of stream ciphers,”
in ACM Symposium on InformAtion, Computer and Communications
Security (ASIACCS’06), 2006, pp. 283–288.

[5] T. Johansson and F. Jönsson, “Fast correlation attacksbased on turbo
code techniques,” inAdvances in Cryptology—CRYPTO’99, ser. Lecture
Notes in Computer Science, M. Wiener, Ed., vol. 1666. Springer-
Verlag, 1999, pp. 181–197.

[6] ——, “Fast correlation attacks through reconstruction of linear polyno-
mials,” in Advances in Cryptology—CRYPTO 2000, ser. Lecture Notes
in Computer Science, M. Bellare, Ed., vol. 1880. Springer-Verlag,
2000, pp. 300–315.

[7] V. Chepyzhov, T. Johansson, and B. Smeets, “A simple algorithm for
fast correlation attacks on stream ciphers,” inFast Software Encryption
2000, ser. Lecture Notes in Computer Science, B. Schneier, Ed., vol.
1978. Springer-Verlag, 2000, pp. 181–195.

[8] M. J. Mihaljević, M. Fossorier, and H. Imai, “Fast correlation attack
algorithm with list decoding and an application,”Lecture Notes in
Computer Science, vol. 2355, pp. 196–210, 2002.

[9] P. Chose, A. Joux, and M. Mitton, “Fast correlation attacks: An
algorithmic point of view,” Lecture Notes in Computer Science, vol.
2332, pp. 209–221, 2002.

[10] N. Courtois and W. Meier, “Algebraic attacks on stream ciphers with
linear feedback,” inAdvances in Cryptology—EUROCRYPT 2003, ser.
Lecture Notes in Computer Science, E. Biham, Ed., vol. 2656.Springer-
Verlag, 2003, pp. 345–359.

[11] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs
for stream ciphers,” inAdvances in Cryptology—ASIACRYPT 2000,
ser. Lecture Notes in Computer Science, T. Okamoto, Ed., vol. 1976.
Springer-Verlag, 2000, pp. 1–13.

[12] J. Hoch and A. Shamir, “Fault analysis of stream ciphers.” in CHES
2004, ser. Lecture Notes in Computer Science, vol. 3156. Springer-
Verlag, 2004, pp. 240–253.

[13] A. Canteaut and M. Trabbia, “Improved fast correlationattacks using
parity-check equations of weight 4 and 5,” inAdvances in Cryptology—
EUROCRYPT 2000, ser. Lecture Notes in Computer Science, B. Preneel,
Ed., vol. 1807. Springer-Verlag, 2000, pp. 573–588.

APPENDIX

Grain is a bit oriented design and for simplicity of reading
the test vectors below are translated to hexadecimal strings.
Hence, the most significant bit of the first hex value represents
index 0.

Key: 00000000000000000000000000000000
IV: 000000000000000000000000
Keystream: 0fd9deefeb6fad437bf43fce35849cfe



Key: 0123456789abcdef123456789abcdef0
IV : 0123456789abcdef12345678
Keystream: db032aff3788498b57cb894fffb6bb96

The reference implementation uses bytes and in this case the
least significant bit of the first byte will be treated as index0.
The test vectors are then given as:

Key: 00000000000000000000000000000000
IV: 000000000000000000000000
Keystream: f09b7bf7d7f6b5c2de2ffc73ac21397f

Key: 0123456789abcdef123456789abcdef0
IV : 0123456789abcdef12345678
Keystream: afb5babfa8de896b4b9c6acaf7c4fbfd


