
PIC microcontroller 1

PIC microcontroller

PIC microcontrollers in DIP and QFN packages

16-bit 28-pin PDIP PIC24 microcontroller next to
a metric ruler

Die of a PIC12C508 8-bit, fully static,
EEPROM/EPROM/ROM-based CMOS

microcontroller manufactured by Microchip
Technology using a 1200 nanometre process.

PIC is a family of modified Harvard architecture microcontrollers
made by Microchip Technology, derived from the PIC1650[1][2][3]

originally developed by General Instrument's Microelectronics
Division. The name PIC initially referred to "Peripheral Interface
Controller".[4][5]

PICs are popular with both industrial developers and hobbyists alike
due to their low cost, wide availability, large user base, extensive
collection of application notes, availability of low cost or free
development tools, and serial programming (and re-programming with
flash memory) capability. They are also commonly used in educational
programming as they often come with the easy to use 'pic logicator'
software.

http://en.wikipedia.org/w/index.php?title=Dual_in-line_package
http://en.wikipedia.org/w/index.php?title=QFN
http://en.wikipedia.org/w/index.php?title=File%3APIC_microcontrollers.jpg
http://en.wikipedia.org/w/index.php?title=File%3AMicrochip_PIC24HJ32GP202.jpg
http://en.wikipedia.org/w/index.php?title=Die_%28integrated_circuit%29
http://en.wikipedia.org/w/index.php?title=EEPROM
http://en.wikipedia.org/w/index.php?title=EPROM
http://en.wikipedia.org/w/index.php?title=Mask_ROM
http://en.wikipedia.org/w/index.php?title=CMOS
http://en.wikipedia.org/w/index.php?title=Microcontroller
http://en.wikipedia.org/w/index.php?title=Microchip_Technology
http://en.wikipedia.org/w/index.php?title=Microchip_Technology
http://en.wikipedia.org/w/index.php?title=Nanometre
http://en.wikipedia.org/w/index.php?title=File%3APIC12C508-HD.jpg
http://en.wikipedia.org/w/index.php?title=Modified_Harvard_architecture
http://en.wikipedia.org/w/index.php?title=Microcontroller
http://en.wikipedia.org/w/index.php?title=Microchip_Technology
http://en.wikipedia.org/w/index.php?title=General_Instrument

PIC microcontroller 2

Die of a PIC16C505 CMOS ROM-based 8-bit
microcontroller manufactured by Microchip
Technology using a 1200 nanometre process.

History

Various older (EPROM) PIC microcontrollers

The original PIC was built to be used with General Instrument's new
16-bit CPU, the CP1600. While generally a good CPU, the CP1600
had poor I/O performance, and the 8-bit PIC was developed in 1975 to
improve performance of the overall system by offloading I/O tasks
from the CPU. The PIC used simple microcode stored in ROM to
perform its tasks, and although the term was not used at the time, it
shares some common features with RISC designs.

In 1985, General Instrument spun off their microelectronics division
and the new ownership cancelled almost everything — which by this
time was mostly out-of-date. The PIC, however, was upgraded with
internal EPROM to produce a programmable channel controller and today a huge variety of PICs are available with
various on-board peripherals (serial communication modules, UARTs, motor control kernels, etc.) and program
memory from 256 words to 64k words and more (a "word" is one assembly language instruction, varying from 12,
14 or 16 bits depending on the specific PIC micro family).

PIC and PICmicro are registered trademarks of Microchip Technology. It is generally thought that PIC stands for
Peripheral Interface Controller, although General Instruments' original acronym for the initial PIC1640 and
PIC1650 devices was "Programmable Interface Controller".[4] The acronym was quickly replaced with
"Programmable Intelligent Computer".[5]

The Microchip 16C84 (PIC16x84), introduced in 1993, was the first[citation needed] Microchip CPU with on-chip
EEPROM memory. This electrically erasable memory made it cost less than CPUs that required a quartz "erase
window" for erasing EPROM.

http://en.wikipedia.org/w/index.php?title=Die_%28integrated_circuit%29
http://en.wikipedia.org/w/index.php?title=CMOS
http://en.wikipedia.org/w/index.php?title=ROM
http://en.wikipedia.org/w/index.php?title=Microcontroller
http://en.wikipedia.org/w/index.php?title=Microchip_Technology
http://en.wikipedia.org/w/index.php?title=Microchip_Technology
http://en.wikipedia.org/w/index.php?title=Nanometre
http://en.wikipedia.org/w/index.php?title=File%3APIC16C505-HD.jpg
http://en.wikipedia.org/w/index.php?title=File%3APIC16CxxxWIN.JPG
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=General_Instrument_CP1600
http://en.wikipedia.org/w/index.php?title=CPU
http://en.wikipedia.org/w/index.php?title=Input/output
http://en.wikipedia.org/w/index.php?title=Microcode
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computer
http://en.wikipedia.org/w/index.php?title=Microelectronics
http://en.wikipedia.org/w/index.php?title=EPROM
http://en.wikipedia.org/w/index.php?title=Channel_controller
http://en.wikipedia.org/w/index.php?title=Serial_communications
http://en.wikipedia.org/w/index.php?title=Universal_asynchronous_receiver/transmitter
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Micro_programming_language
http://en.wikipedia.org/w/index.php?title=PIC16x84
http://en.wikipedia.org/wiki/Citation_needed

PIC microcontroller 3

Core architecture
The PIC architecture is characterized by its multiple attributes:
• Separate code and data spaces (Harvard architecture).
•• A small number of fixed length instructions
•• Most instructions are single cycle execution (2 clock cycles, or 4 clock cycles in 8-bit models), with one delay

cycle on branches and skips
• One accumulator (W0), the use of which (as source operand) is implied (i.e. is not encoded in the opcode)
• All RAM locations function as registers as both source and/or destination of math and other functions.[6]

•• A hardware stack for storing return addresses
•• A small amount of addressable data space (32, 128, or 256 bytes, depending on the family), extended through

banking
•• Data space mapped CPU, port, and peripheral registers
•• ALU status flags are mapped into the data space
•• The program counter is also mapped into the data space and writable (this is used to implement indirect jumps).
There is no distinction between memory space and register space because the RAM serves the job of both memory
and registers, and the RAM is usually just referred to as the register file or simply as the registers.

Data space (RAM)
PICs have a set of registers that function as general purpose RAM. Special purpose control registers for on-chip
hardware resources are also mapped into the data space. The addressability of memory varies depending on device
series, and all PIC devices have some banking mechanism to extend addressing to additional memory. Later series of
devices feature move instructions which can cover the whole addressable space, independent of the selected bank. In
earlier devices, any register move had to be achieved via the accumulator.
To implement indirect addressing, a "file select register" (FSR) and "indirect register" (INDF) are used. A register
number is written to the FSR, after which reads from or writes to INDF will actually be to or from the register
pointed to by FSR. Later devices extended this concept with post- and pre- increment/decrement for greater
efficiency in accessing sequentially stored data. This also allows FSR to be treated almost like a stack pointer (SP).
External data memory is not directly addressable except in some high pin count PIC18 devices.

Code space
The code space is generally implemented as ROM, EPROM or flash ROM. In general, external code memory is not
directly addressable due to the lack of an external memory interface. The exceptions are PIC17 and select high pin
count PIC18 devices.[7]

Word size
All PICs handle (and address) data in 8-bit chunks. However, the unit of addressability of the code space is not
generally the same as the data space. For example, PICs in the baseline (PIC12) and mid-range (PIC16) families
have program memory addressable in the same wordsize as the instruction width, i.e. 12 or 14 bits respectively. In
contrast, in the PIC18 series, the program memory is addressed in 8-bit increments (bytes), which differs from the
instruction width of 16 bits.
In order to be clear, the program memory capacity is usually stated in number of (single word) instructions, rather
than in bytes.

http://en.wikipedia.org/w/index.php?title=Harvard_architecture
http://en.wikipedia.org/w/index.php?title=Accumulator_%28computing%29
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=Bank_switching
http://en.wikipedia.org/w/index.php?title=Read-only_memory
http://en.wikipedia.org/w/index.php?title=EPROM
http://en.wikipedia.org/w/index.php?title=Flash_memory

PIC microcontroller 4

Stacks
PICs have a hardware call stack, which is used to save return addresses. The hardware stack is not software
accessible on earlier devices, but this changed with the 18 series devices.
Hardware support for a general purpose parameter stack was lacking in early series, but this greatly improved in the
18 series, making the 18 series architecture more friendly to high level language compilers.

Instruction set
A PIC's instructions vary from about 35 instructions for the low-end PICs to over 80 instructions for the high-end
PICs. The instruction set includes instructions to perform a variety of operations on registers directly, the
accumulator and a literal constant or the accumulator and a register, as well as for conditional execution, and
program branching.
Some operations, such as bit setting and testing, can be performed on any numbered register, but bi-operand
arithmetic operations always involve W (the accumulator), writing the result back to either W or the other operand
register. To load a constant, it is necessary to load it into W before it can be moved into another register. On the
older cores, all register moves needed to pass through W, but this changed on the "high end" cores.
PIC cores have skip instructions which are used for conditional execution and branching. The skip instructions are
'skip if bit set' and 'skip if bit not set'. Because cores before PIC18 had only unconditional branch instructions,
conditional jumps are implemented by a conditional skip (with the opposite condition) followed by an unconditional
branch. Skips are also of utility for conditional execution of any immediate single following instruction. It is possible
to skip skip instructions. For example, the instruction sequence "skip if A; skip if B; C" will execute C if A is true or
if B is false.
The 18 series implemented shadow registers which save several important registers during an interrupt, providing
hardware support for automatically saving processor state when servicing interrupts.
In general, PIC instructions fall into 5 classes:
1. Operation on working register (WREG) with 8-bit immediate ("literal") operand. E.g. movlw (move literal to

WREG), andlw (AND literal with WREG). One instruction peculiar to the PIC is retlw, load immediate into
WREG and return, which is used with computed branches to produce lookup tables.

2. Operation with WREG and indexed register. The result can be written to either the Working register (e.g.
addwf reg,w). or the selected register (e.g. addwf reg,f).

3.3. Bit operations. These take a register number and a bit number, and perform one of 4 actions: set or clear a bit, and
test and skip on set/clear. The latter are used to perform conditional branches. The usual ALU status flags are
available in a numbered register so operations such as "branch on carry clear" are possible.

4. Control transfers. Other than the skip instructions previously mentioned, there are only two: goto and call.
5. A few miscellaneous zero-operand instructions, such as return from subroutine, and sleep to enter low-power

mode.

http://en.wikipedia.org/w/index.php?title=Call_stack
http://en.wikipedia.org/w/index.php?title=Accumulator_%28computing%29
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Branch_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Lookup_table

PIC microcontroller 5

Performance
The architectural decisions are directed at the maximization of speed-to-cost ratio. The PIC architecture was among
the first scalar CPU designs,[citation needed] and is still among the simplest and cheapest. The Harvard architecture—in
which instructions and data come from separate sources—simplifies timing and microcircuit design greatly, and this
benefits clock speed, price, and power consumption.
The PIC instruction set is suited to implementation of fast lookup tables in the program space. Such lookups take one
instruction and two instruction cycles. Many functions can be modeled in this way. Optimization is facilitated by the
relatively large program space of the PIC (e.g. 4096 × 14-bit words on the 16F690) and by the design of the
instruction set, which allows for embedded constants. For example, a branch instruction's target may be indexed by
W, and execute a "RETLW" which does as it is named - return with literal in W.
Interrupt latency is constant at three instruction cycles. External interrupts have to be synchronized with the four
clock instruction cycle, otherwise there can be a one instruction cycle jitter. Internal interrupts are already
synchronized. The constant interrupt latency allows PICs to achieve interrupt driven low jitter timing sequences. An
example of this is a video sync pulse generator. This is no longer true in the newest PIC models, because they have a
synchronous interrupt latency of three or four cycles.

Advantages
•• Small instruction set to learn
• RISC architecture
•• Built in oscillator with selectable speeds
• Easy entry level, in circuit programming plus in circuit debugging PICKit units available for less than $50
•• Inexpensive microcontrollers
• Wide range of interfaces including I²C, SPI, USB, USART, A/D, programmable comparators, PWM, LIN, CAN,

PSP, and Ethernet[8]

• Availability of processors in DIL package make them easy to handle for hobby use.

Limitations
• One accumulator
• Register-bank switching is required to access the entire RAM of many devices
• Operations and registers are not orthogonal; some instructions can address RAM and/or immediate constants,

while others can only use the accumulator
The following stack limitations have been addressed in the PIC18 series, but still apply to earlier cores:
• The hardware call stack is not addressable, so preemptive task switching cannot be implemented
• Software-implemented stacks are not efficient, so it is difficult to generate reentrant code and support local

variables
With paged program memory, there are two page sizes to worry about: one for CALL and GOTO and another for
computed GOTO (typically used for table lookups). For example, on PIC16, CALL and GOTO have 11 bits of
addressing, so the page size is 2048 instruction words. For computed GOTOs, where you add to PCL, the page size
is 256 instruction words. In both cases, the upper address bits are provided by the PCLATH register. This register
must be changed every time control transfers between pages. PCLATH must also be preserved by any interrupt
handler.[9]

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computer
http://en.wikipedia.org/w/index.php?title=PICKit
http://en.wikipedia.org/w/index.php?title=I%C2%B2C
http://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/w/index.php?title=USB
http://en.wikipedia.org/w/index.php?title=Universal_asynchronous_receiver/transmitter
http://en.wikipedia.org/w/index.php?title=Analog-to-digital_converter
http://en.wikipedia.org/w/index.php?title=Pulse-width_modulation
http://en.wikipedia.org/w/index.php?title=Local_Interconnect_Network
http://en.wikipedia.org/w/index.php?title=Controller_area_network
http://en.wikipedia.org/w/index.php?title=Parallel_slave_port
http://en.wikipedia.org/w/index.php?title=Dual_in-line_package
http://en.wikipedia.org/w/index.php?title=Accumulator_%28computing%29
http://en.wikipedia.org/w/index.php?title=Bank_switching
http://en.wikipedia.org/w/index.php?title=Orthogonal%23Computer_science
http://en.wikipedia.org/w/index.php?title=Constant_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Stack_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Reentrant_%28subroutine%29
http://en.wikipedia.org/w/index.php?title=Local_variable
http://en.wikipedia.org/w/index.php?title=Local_variable

PIC microcontroller 6

Compiler development
While several commercial compilers are available, in 2008, Microchip released their own C compilers, C18 and C30,
for the line of 18F 24F and 30/33F processors.
The easy to learn RISC instruction set of the PIC assembly language code can make the overall flow difficult to
comprehend. Judicious use of simple macros can increase the readability of PIC assembly language. For example,
the original Parallax PIC assembler ("SPASM") has macros which hide W and make the PIC look like a two-address
machine. It has macro instructions like "mov b, a" (move the data from address a to address b) and "add b, a"
(add data from address a to data in address b). It also hides the skip instructions by providing three operand branch
macro instructions such as "cjne a, b, dest" (compare a with b and jump to dest if they are not equal).

Family core architectural differences
PICmicro chips have a Harvard architecture, and instruction words are unusual sizes. Originally, 12-bit instructions
included 5 address bits to specify the memory operand, and 9-bit branch destinations. Later revisions added opcode
bits, allowing additional address bits.

Baseline core devices (12 bit)
These devices feature a 12-bit wide code memory, a 32-byte register file, and a tiny two level deep call stack. They
are represented by the PIC10 series, as well as by some PIC12 and PIC16 devices. Baseline devices are available in
6-pin to 40-pin packages.
Generally the first 7 to 9 bytes of the register file are special-purpose registers, and the remaining bytes are general
purpose RAM. Pointers are implemented using a register pair: after writing an address to the FSR (file select
register), the INDF (indirect f) register becomes an alias for the addressed register. If banked RAM is implemented,
the bank number is selected by the high 3 bits of the FSR. This affects register numbers 16–31; registers 0–15 are
global and not affected by the bank select bits.
Because of the very limited register space (5 bits), 4 rarely read registers were not assigned addresses, but written by
special instructions (OPTION and TRIS).
The ROM address space is 512 words (12 bits each), which may be extended to 2048 words by banking. CALL and
GOTO instructions specify the low 9 bits of the new code location; additional high-order bits are taken from the status
register. Note that a CALL instruction only includes 8 bits of address, and may only specify addresses in the first
half of each 512-word page.
Lookup tables are implemented using a computed GOTO (assignment to PCL register) into a table of RETLW
instructions.
The instruction set is as follows. Register numbers are referred to as "f", while constants are referred to as "k". Bit
numbers (0–7) are selected by "b". The "d" bit selects the destination: 0 indicates W, while 1 indicates that the result
is written back to source register f. The C and Z status flags may be set based on the result; otherwise they are
unmodified. Add and subtract (but not rotate) instructions that set C also set the DC (digit carry) flag, the carry from
bit 3 to bit 4, which is useful for BCD arithmetic.

http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Parallax%2C_Inc._%28company%29
http://en.wikipedia.org/w/index.php?title=Binary-coded_decimal

PIC microcontroller 7

12-bit PIC instruction set

11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

0 0 0 0 0 0 0 opcode Miscellaneous instructions

0 0 0 0 0 0 0 0 0 0 0 0 NOP No operation (MOVW 0,W)

0 0 0 0 0 0 0 0 0 0 1 0 OPTION Copy W to OPTION register

0 0 0 0 0 0 0 0 0 0 1 1 SLEEP Go into standby mode

0 0 0 0 0 0 0 0 0 1 0 0 CLRWDT Restart watchdog timer

0 0 0 0 0 0 0 0 0 1 f TRIS f Copy W to tri-state register (f = 1, 2 or 3)

0 0 opcode d register ALU operations: dest ← OP(f,W)

0 0 0 0 0 0 1 f MOVWF f dest ← W

0 0 0 0 0 1 d f CLR f,d Z dest ← 0, usually written CLRW or CLRF f

0 0 0 0 1 0 d f SUBWF f,d C Z dest ← f−W (dest ← f+~W+1)

0 0 0 0 1 1 d f DECF f,d Z dest ← f−1

0 0 0 1 0 0 d f IORWF f,d Z dest ← f | W, logical inclusive or

0 0 0 1 0 1 d f ANDWF f,d Z dest ← f & W, logical and

0 0 0 1 1 0 d f XORWF f,d Z dest ← f ^ W, logical exclusive or

0 0 0 1 1 1 d f ADDWF f,d C Z dest ← f+W

0 0 1 0 0 0 d f MOVF f,d Z dest ← f

0 0 1 0 0 1 d f COMF f,d Z dest ← ~f, bitwise complement

0 0 1 0 1 0 d f INCF f,d Z dest ← f+1

0 0 1 0 1 1 d f DECFSZ f,d dest ← f−1, then skip if zero

0 0 1 1 0 0 d f RRF f,d C dest ← CARRY<<7 | f>>1, rotate right through carry

0 0 1 1 0 1 d f RLF f,d C dest ← F<<1 | CARRY, rotate left through carry

0 0 1 1 1 0 d f SWAPF f,d dest ← f<<4 | f>>4, swap nibbles

0 0 1 1 1 1 d f INCFSZ f,d dest ← f+1, then skip if zero

0 1 op bit register Bit operations

0 1 0 0 bit f BCF f,b Clear bit b of f

0 1 0 1 bit f BSF f,b Set bit b of f

0 1 1 0 bit f BTFSC f,b Skip if bit b of f is clear

0 1 1 1 bit f BTFSS f,b Skip if bit b of f is set

1 0 op k Control transfers

1 0 0 0 k RETLW k Set W ← k, then return from subroutine

1 0 0 1 k CALL k Call subroutine, 8-bit address k

1 0 1 k GOTO k Jump to 9-bit address k[10]

1 1 op 8-bit immediate Operations with W and 8-bit literal: W ← OP(k,W)

1 1 0 0 k MOVLW k W ← k

1 1 0 1 k IORLW k Z W ← k | W, bitwise logical or

PIC microcontroller 8

1 1 1 0 k ANDLW k Z W ← k & W, bitwise and

1 1 1 1 k XORLW k Z W ← k ^ W, bitwise exclusive or

11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

ELAN Microelectronics clones (13 bit)
ELAN Microelectronics Corp. make a series of PICmicro-like microcontrollers with a 13-bit instruction word.[11]

The instructions are mostly compatible with the mid-range 14-bit instruction set, but limited to a 6-bit register
address (16 special-purpose registers and 48 bytes of RAM) and a 10-bit (1024 word) program space.
The 10-bit program counter is accessible as R2. Reads access only the low bits, and writes clear the high bits. An
exception is the TBL instruction, which modifies the low byte while preserving bits 8 and 9.
The 7 accumulator-immediate instructions are renumbered relative to the 14-bit PICmicro, to fit into 3 opcode bits
rather than 4, but they are all there, as well as an additional software interrupt instruction.
There are a few additional miscellaneous instructions, and there are some changes to the terminology (the PICmicro
OPTION register is called the CONTrol register; the PICmicro TRIS registers 1–3 are called I/O control registers
5–7), but the equivalents are obvious.

13-bit EM78 instruction set[12]

12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

0 0 0 0 0 0 0 opcode Miscellaneous instructions

0 0 0 0 0 0 0 0 0 0 0 0 0 NOP* No operation (MOVW 0,W)

0 0 0 0 0 0 0 0 0 0 0 0 1 DAA† C Decimal Adjust after Addition

0 0 0 0 0 0 0 0 0 0 0 1 0 CONTW* Write CONT register (CONT ← W)

0 0 0 0 0 0 0 0 0 0 0 1 1 SLEEP* Go into standby mode (WDT ← 0, stop clock)

0 0 0 0 0 0 0 0 0 0 1 0 0 CLRWDT* Restart watchdog timer (WDT ← 0)

0 0 0 0 0 0 0 0 0 f IOW f* Copy W to I/O control register (f = 5–7, 11–15)

0 0 0 0 0 0 0 0 1 0 0 0 0 ENI† Enable interrupts

0 0 0 0 0 0 0 0 1 0 0 0 1 DISI† Disable interrupts

0 0 0 0 0 0 0 0 1 0 0 1 0 RET Return from subroutine, W unmodified

0 0 0 0 0 0 0 0 1 0 0 1 1 RETI Return from interrupt; return & enable interrupts

0 0 0 0 0 0 0 0 1 0 1 0 0 CONTR† Read CONT register (W ← CONT)

0 0 0 0 0 0 0 0 1 f IOR f† Copy I/O control register to W (f = 5–7, 11–15)

0 0 0 0 0 0 0 1 0 0 0 0 0 TBL† C Z PCL += W. preserve PC bits 8 & 9

0 0 opcode d register ALU operations same as 12- and 14-bit PIC

0 1 op bit register Bit operations same as 12- and 14-bit PIC

1 0 op k Control transfers same as 14-bit PIC

1 1 opcode 8-bit immediate Operations with W and 8-bit literal: W ← OP(k,W)

http://en.wikipedia.org/w/index.php?title=List_of_common_microcontrollers%23ELAN_Microelectronics_Corp.
http://en.wikipedia.org/w/index.php?title=Intel_BCD_opcode%23Adding

PIC microcontroller 9

1 1 0 op k MOV/IOR/AND/XOR, same as 12-bit PIC

1 1 1 0 0 k RETLW k W ← k, then return from subroutine

1 1 1 0 1 k SUBLW k C Z W ← k−W (W ← k+~W+1)

1 1 1 1 0 k INT k† Push PC, PC ← k (software interrupt, usually k=1)

1 1 1 1 1 k ADDLW k C Z W ← k+W

12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

*: Same opcode as 12-bit PIC
†: Instruction unique to EM78 instruction set with no PIC equivalent
Some models support multiple ROM or RAM banks, in a manner similar to other PIC microcontrollers.

Mid-range core devices (14 bit)
These devices feature a 14-bit wide code memory, and an improved 8 level deep call stack. The instruction set
differs very little from the baseline devices, but the 2 additional opcode bits allow 128 registers and 2048 words of
code to be directly addressed. There are a few additional miscellaneous instructions, and two additional 8-bit literal
instructions, add and subtract. The mid-range core is available in the majority of devices labeled PIC12 and PIC16.
The first 32 bytes of the register space are allocated to special-purpose registers; the remaining 96 bytes are used for
general-purpose RAM. If banked RAM is used, the high 16 registers (0x70–0x7F) are global, as are a few of the
most important special-purpose registers, including the STATUS register which holds the RAM bank select bits.
(The other global registers are FSR and INDF, the low 8 bits of the program counter PCL, the PC high preload
register PCLATH, and the master interrupt control register INTCON.)
The PCLATH register supplies high-order instruction address bits when the 8 bits supplied by a write to the PCL
register, or the 11 bits supplied by a GOTO or CALL instruction, is not sufficient to address the available ROM
space.

14-bit PIC instruction set

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

0 0 0 0 0 0 0 opcode Miscellaneous instructions

0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOP No operation (MOVW 0,W)

0 0 0 0 0 0 0 0 0 0 1 0 0 0 RETURN Return from subroutine, W unmodified

0 0 0 0 0 0 0 0 0 0 1 0 0 1 RETFIE Return from interrupt

0 0 0 0 0 0 0 1 1 0 0 0 1 0 OPTION Copy W to OPTION register

0 0 0 0 0 0 0 1 1 0 0 0 1 1 SLEEP Go into standby mode

0 0 0 0 0 0 0 1 1 0 0 1 0 0 CLRWDT Restart watchdog timer

0 0 0 0 0 0 0 1 1 0 0 1 f TRIS f Copy W to tri-state register (f = 1, 2 or 3)

0 0 opcode d register ALU operations: dest ← OP(f,W)

0 0 0 0 0 0 1 f MOVWF f f ← W

0 0 0 0 0 1 d f CLR f,d Z dest ← 0, usually written CLRW or CLRF f

0 0 0 0 1 0 d f SUBWF f,d C Z dest ← f−W (dest ← f+~W+1)

0 0 0 0 1 1 d f DECF f,d Z dest ← f−1

0 0 0 1 0 0 d f IORWF f,d Z dest ← f | W, logical inclusive or

PIC microcontroller 10

0 0 0 1 0 1 d f ANDWF f,d Z dest ← f & W, logical and

0 0 0 1 1 0 d f XORWF f,d Z dest ← f ^ W, logical exclusive or

0 0 0 1 1 1 d f ADDWF f,d C Z dest ← f+W

0 0 1 0 0 0 d f MOVF f,d Z dest ← f

0 0 1 0 0 1 d f COMF f,d Z dest ← ~f, bitwise complement

0 0 1 0 1 0 d f INCF f,d Z dest ← f+1

0 0 1 0 1 1 d f DECFSZ f,d dest ← f−1, then skip if zero

0 0 1 1 0 0 d f RRF f,d C dest ← CARRY<<7 | f>>1, rotate right through carry

0 0 1 1 0 1 d f RLF f,d C dest ← f<<1 | CARRY, rotate left through carry

0 0 1 1 1 0 d f SWAPF f,d dest ← f<<4 | f>>4, swap nibbles

0 0 1 1 1 1 d f INCFSZ f,d dest ← f+1, then skip if zero

0 1 op bit register Bit operations

0 1 0 0 bit f BCF f,b Clear bit b of f

0 1 0 1 bit f BSF f,b Set bit b of f

0 1 1 0 bit f BTFSC f,b Skip if bit b of f is clear

0 1 1 1 bit f BTFSS f,b Skip if bit b of f is set

1 0 op k Control transfers

1 0 0 k CALL k Call subroutine

1 0 1 k GOTO k Jump to address k

1 1 opcode 8-bit immediate Operations with W and 8-bit literal: W ← OP(k,W)

1 1 0 0 x x k MOVLW k W ← k

1 1 0 1 x x k RETLW k W ← k, then return from subroutine

1 1 1 0 0 0 k IORLW k Z W ← k | W, bitwise logical or

1 1 1 0 0 1 k ANDLW k Z W ← k & W, bitwise and

1 1 1 0 1 0 k XORLW k Z W ← k ^ W, bitwise exclusive or

1 1 1 0 1 1 k (reserved)

1 1 1 1 0 x k SUBLW k C Z W ← k−W (dest ← k+~W+1)

1 1 1 1 1 x k ADDLW k C Z W ← k+W

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

PIC microcontroller 11

Enhanced mid-range core devices (14 bit)
Enhanced mid-range core devices introduce a deeper hardware stack, additional reset methods, 14 additional
instructions and ‘C’ programming language optimizations. In particular. there are two INDF registers

(INDF0 and INDF1), and two corresponding FSR register pairs (FSRnL and FSRnH). Special instructions use
FSRn registers like address registers, with a variety of addressing modes.

14-bit enhanced PIC additional instructions

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

0 0 0 0 0 0 0 opcode Miscellaneous instructions

0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESET Software reset

0 0 0 0 0 0 0 0 0 0 1 0 1 0 CALLW Push PC, then jump to PCLATH:W

0 0 0 0 0 0 0 0 0 0 1 0 1 1 BRW PC ← PC + W, relative jump using W

0 0 0 0 0 0 0 0 0 1 0 n 0 0 MOVIW ++FSRn Z Increment FSRn, then W ← INDFn

0 0 0 0 0 0 0 0 0 1 0 n 0 1 MOVIW −−FSRn Z Decrement FSRn, then W ← INDFn

0 0 0 0 0 0 0 0 0 1 0 n 1 0 MOVIW FSRn++ Z W ← INDFn, then increment FSRn

0 0 0 0 0 0 0 0 0 1 0 n 1 1 MOVIW FSRn−− Z W ← INDFn, then decrement FSRn

0 0 0 0 0 0 0 0 0 1 1 n m MOVWI using FSRn INDFn ← W, same modes as MOVIW

0 0 0 0 0 0 0 0 1 k MOVLB k BSR ← k, move literal to bank select register

1 1 opcode d register ALU operations: dest ← OP(f,W)

1 1 0 1 0 1 d f LSLF f,d C Z dest ← f << 1, logical shift left

1 1 0 1 1 0 d f LSRF f,d C Z dest ← f >> 1, logical shift right

1 1 0 1 1 1 d f ASRF f,d C Z dest ← f >> 1, arithmetic shift right

1 1 1 0 1 1 d f SUBWFB f,d C Z dest ← f + ~W + C, subtract with carry

1 1 1 1 0 1 d f ADDWFC f,d C Z dest ← f + W + C, add with carry

1 1 opcode k Operations with literal k

1 1 0 0 0 1 0 n k ADDFSR FSRn,k FSRn ← FSRn + k, add 6-bit signed offset

1 1 0 0 0 1 1 k MOVLP k PCLATH ← k, move 7-bit literal to PC latch high

1 1 0 0 1 k BRA k PC ← PC + k, branch relative using 9-bit signed offset

1 1 1 1 1 1 0 n k MOVIW k[FSRn] Z W ← [FSRn+k], 6-bit signed offset

1 1 1 1 1 1 1 n k MOVWI k[FSRn] [FSRn+k] ← W, 6-bit signed offset

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? Description

http://en.wikipedia.org/w/index.php?title=Addressing_mode

PIC microcontroller 12

PIC17 high end core devices (16 bit)
The 17 series never became popular and has been superseded by the PIC18 architecture. It is not recommended for
new designs, and availability may be limited.
Improvements over earlier cores are 16-bit wide opcodes (allowing many new instructions), and a 16 level deep call
stack. PIC17 devices were produced in packages from 40 to 68 pins.
The 17 series introduced a number of important new features:
•• a memory mapped accumulator
•• read access to code memory (table reads)
•• direct register to register moves (prior cores needed to move registers through the accumulator)
•• an external program memory interface to expand the code space
•• an 8-bit × 8-bit hardware multiplier
•• a second indirect register pair
•• auto-increment/decrement addressing controlled by control bits in a status register (ALUSTA)

PIC18 high end core devices (16 bit)
Microchip introduced the PIC18 architecture in 2000. [13] Unlike the 17 series, it has proven to be very popular,
with a large number of device variants presently in manufacture. In contrast to earlier devices, which were more
often than not programmed in assembly, C has become the predominant development language.[14]

The 18 series inherits most of the features and instructions of the 17 series, while adding a number of important new
features:
•• call stack is 21 bits wide and much deeper (31 levels deep)
•• the call stack may be read and written (TOSU:TOSH:TOSL registers)
•• conditional branch instructions
•• indexed addressing mode (PLUSW)
•• extending the FSR registers to 12 bits, allowing them to linearly address the entire data address space
•• the addition of another FSR register (bringing the number up to 3)
The RAM space is 12 bits, addressed using a 4-bit bank select register and an 8-bit offset in each instruction. An
additional "access" bit in each instruction selects between bank 0 (a=0) and the bank selected by the BSR (a=1).
A 1-level stack is also available for the STATUS, WREG and BSR registers. They are saved on every interrupt, and
may be restored on return. If interrupts are disabled, they may also be used on subroutine call/return by setting the s
bit (appending ", FAST" to the instruction).
The auto increment/decrement feature was improved by removing the control bits and adding four new indirect
registers per FSR. Depending on which indirect file register is being accessed it is possible to postdecrement,
postincrement, or preincrement FSR; or form the effective address by adding W to FSR.
In more advanced PIC18 devices, an "extended mode" is available which makes the addressing even more favorable
to compiled code:
•• a new offset addressing mode; some addresses which were relative to the access bank are now interpreted relative

to the FSR2 register
•• the addition of several new instructions, notable for manipulating the FSR registers.
These changes were primarily aimed at improving the efficiency of a data stack implementation. If FSR2 is used
either as the stack pointer or frame pointer, stack items may be easily indexed—allowing more efficient re-entrant
code. Microchip's MPLAB C18 C compiler chooses to use FSR2 as a frame pointer.

http://mdubuc.freeshell.org/Sdcc/

PIC microcontroller 13

PIC18 16-bit instruction set[15]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Mnemonic C? Z? N? Description

0 0 0 0 0 0 0 opcode Miscellaneous instructions

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOP No operation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 SLEEP Go into standby mode

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 CLRWDT Restart watchdog timer

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 PUSH Push PC on top of stack

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 POP Pop (and discard) top of stack

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 DAW C Decimal adjust W

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 TBLRD* Table read

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 TBLRD*+ Table read with postincrement

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 TBLRD*− Table read with postdecrement

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 TBLRD+* Table read with pre-increment

0 0 0 0 0 0 0 0 0 0 0 0 1 1 mod TBLWR Table write, same modes as TBLRD

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 s RETFIE [, FAST] Return from interrupt

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 s RETURN [, FAST] Return from subroutine

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 RESET cleared Software reset

0 0 0 0 0 0 0 1 0 0 0 0 k MOVLB Move literal k to bank select register

0 opcode d a register ALU operations: dest ← OP(f,W)

0 0 0 0 0 0 1 a f MULWF f,a PRODH:PRODL ← W × f (unsigned)

0 0 0 0 0 1 d a f DECF f,d,a C Z N dest ← f − 1

0 0 0 1 0 0 d a f IORWF f,d,a Z N dest ← f | W, logical inclusive or

0 0 0 1 0 1 d a f ANDWF f,d,a Z N dest ← f & W, logical and

0 0 0 1 1 0 d a f XORWF f,d,a Z N dest ← f ^ W, exclusive or

0 0 0 1 1 1 d a f COMF f,d,a Z N dest ← ~f, bitwise complement

0 0 1 0 0 0 d a f ADDWFC f,d,a C Z N dest ← f + W + C

0 0 1 0 0 1 d a f ADDWF f,d,a C Z N dest ← f + W

0 0 0 0 1 0 d a f INCF f,d,a C Z N dest ← f + 1

0 0 1 0 1 1 d a f DECFSZ f,d,a dest ← f − 1, skip if 0

0 0 1 1 0 0 d a f RRCF f,d,a C Z N dest ← f>>1 | C<<7, rotate right through carry

0 0 1 1 0 1 d a f RLCF f,d,a C Z N dest ← f<<1 | C, rotate left through carry

0 0 1 1 1 0 d a f SWAPF f,d,a dest ← f<<4 | f>>4, swap nibbles

0 0 1 1 1 1 d a f INCFSZ f,d,a dest ← f + 1, skip if 0

0 1 0 0 0 0 d a f RRNCF f,d,a Z N dest ← f>>1 | f<<7, rotate right (no carry)

0 1 0 0 0 1 d a f RLNCF f,d,a Z N dest ← f<<1 | f>>7, rotate left (no carry)

0 1 0 0 1 0 d a f INFSNZ f,d,a dest ← f + 1, skip if not 0

0 1 0 0 1 1 d a f DCFSNZ f,d,a dest ← f − 1, skip if not 0

0 1 0 1 0 0 d a f MOVF f,d,a Z N dest ← f

PIC microcontroller 14

0 1 0 1 0 1 d a f SUBFWB f,d,a C Z N dest ← W + ~f + C (dest ← W − f − C̅)

0 1 0 1 1 0 d a f SUBWFB f,d,a C Z N dest ← f + ~W + C (dest ← f − W − C̅)

0 1 0 1 1 1 d a f SUBWF f,d,a C Z N dest ← f − W (dest ← f + ~W + 1)

0 1 1 0 opcode a register ALU operations, do not write to W

0 1 1 0 0 0 0 a f CPFSLT f,a skip if f < W

0 1 1 0 0 0 1 a f CPFSEQ f,a skip if f == W

0 1 1 0 0 1 0 a f CPFSGT f,a skip if f > W

0 1 1 0 0 1 1 a f TSTFSZ f,a skip if f == 0

0 1 1 0 1 0 0 a f SETF f,a f ← 0xFF

0 1 1 0 1 0 1 a f CLRF f,a 1 f ← 0, PSR.Z ← 1

0 1 1 0 1 1 0 a f NEGF f,a C Z N f ← −f

0 1 1 0 1 1 1 a f MOVWF f,a f ← W

1 0 opc bit a register Bit operations

0 1 1 1 bit a f BTG f,b,a Toggle bit b of f

1 0 0 0 bit a f BSF f,b,a Set bit b of f

1 0 0 1 bit a f BCF f,b,a Clear bit b of f

1 0 1 0 bit a f BTFSS f,b,a Skip if bit b of f is set

1 0 1 1 bit a f BTFSC f,b,a Skip if bit b of f is clear

1 1 0 opc address Large-address operations

1 1 0 0 source MOVFF s,d Move absolute

1 1 1 1 destination

1 1 0 1 0 n BRA n Branch to PC + 2n

1 1 0 1 1 n RCALL n Subroutine call to PC + 2n

1 1 1 0 0 cond n Conditional branch

1 1 1 0 0 0 0 0 n BZ n Branch if PSR.Z is set

1 1 1 0 0 0 0 1 n BNZ n Branch if PSR.Z is clear

1 1 1 0 0 0 1 0 n BC n Branch if PSR.C is set

1 1 1 0 0 0 1 1 n BNC n Branch if PSR.C is clear

1 1 1 0 0 1 0 0 n BOV n Branch if PSR.V is set

1 1 1 0 0 1 0 1 n BNOV n Branch if PSR.V is clear

1 1 1 0 0 1 1 0 n BN n Branch if PSR.N is set

1 1 1 0 0 1 1 1 n BNN n Branch if PSR.N is clear

1 1 1 0 1 0 (reserved)

1 1 1 0 1 1 opc k 2-word instructions

1 1 1 0 1 1 0 s k (lsbits) CALL k[, FAST] Call subroutine

1 1 1 1 k (msbits)

PIC microcontroller 15

1 1 1 0 1 1 1 0 0 0 f k (msb) LFSR f,k Move 12-bit literal to FSRf

1 1 1 1 0 0 0 0 k (lsbits)

1 1 1 0 1 1 1 1 k (lsbits) GOTO k Absolute jump, PC ← k

1 1 1 1 k (msbits)

1 1 1 1 k (No operation)

PIC24 and dsPIC 16-bit microcontrollers
In 2001, Microchip introduced the dsPIC series of chips,[16] which entered mass production in late 2004. They are
Microchip's first inherently 16-bit microcontrollers. PIC24 devices are designed as general purpose microcontrollers.
dsPIC devices include digital signal processing capabilities in addition.
Although still similar to earlier PIC architectures, there are significant enhancements:[17]

•• All registers are 16 bits wide
•• Data address space expanded to 64 Kbytes
•• First 2K is reserved for peripheral control registers
•• Data bank switching is not required unless RAM exceeds 62K
•• "f operand" direct addressing extended to 13 bits (8 Kbytes)
•• 16 W registers available for register-register operations.
(But operations on f operands always reference W0.)
•• Program counter is 22 bits (Bits 22:1; bit 0 is always 0)
•• Instructions are 24 bits wide
•• Instructions come in byte (B=1) and (16-bit) word (B=0) forms
•• Stack is in RAM (with W15 as stack pointer); there is no hardware stack
•• W14 is the frame pointer
•• Data stored in ROM may be accessed directly ("Program Space Visibility")
•• Interrupt vectors for different interrupt sources are supported.
Some features are:
• hardware MAC (multiply–accumulate)
•• barrel shifting
•• bit reversal
•• (16×16)-bit single-cycle multiplication and other DSP operations
•• hardware divide assist (19 cycles for 16/32-bit divide)
•• hardware support for loop indexing
•• Direct memory access
dsPICs can be programmed in C using Microchip's C30 compiler which is a variant of GCC.
Instruction ROM is 24 bits wide. Software can access ROM in 16-bit words, where even words hold the least
significant 16 bits of each instruction, and odd words hold the most significant 8 bits. The high half of odd words
reads as zero. The program counter is 23 bits wide, but the least significant bit is always 0, so there are 22 modifiable
bits.
Instructions come in 2 main varieties. One is like the classic PIC instructions, with an operation between W0 and a
value in a specified f register (i.e. the first 8K of RAM), and a destination select bit selecting which is updated with
the result. The W registers are memory-mapped. so the f operand may be any W register,
The other form, new to the PIC24, specifies 3 W register operands, 2 of which allow a 3-bit addressing mode
specification:

http://en.wikipedia.org/w/index.php?title=Digital_signal_processing
http://en.wikipedia.org/w/index.php?title=Multiply%E2%80%93accumulate
http://en.wikipedia.org/w/index.php?title=Barrel_shifter
http://en.wikipedia.org/w/index.php?title=Direct_memory_access
http://en.wikipedia.org/w/index.php?title=GNU_Compiler_Collection

PIC microcontroller 16

PIC24 addressing modes

s operand d operand Description

ppp Reg Syntax qqq Reg Syntax

000 ssss Ws 000 dddd Wd Register direct

001 ssss [Ws] 001 dddd [Wd] Indirect

010 ssss [Ws−−] 010 dddd [Wd−−] Indirect with postdecrement

011 ssss [Ws++] 011 dddd [Wd++] Indirect with postincrement

100 ssss [−−Ws] 100 dddd [−−Wd] Indirect with predecrement

101 ssss [++Ws] 101 dddd [++Wd] Indirect with preincrement

11x ssss [Ws+Ww] 11x dddd [Wd+Ww] Indirect with register offset

11k kkkk #u5 (Unused, illegal) 5-bit unsigned immediate

The register offset addressing mode is only available to 2-operand instructions. 3-operand instructions use Ww as the
second source operand, and use this encoding for an unsigned 5-bit immediate source. Note that the same Ww may
be added to both Wd and Ws.
A few instructions are 2 words long. The second word is a NOP, which includes up to 16 bits of additional
immediate operand.

PIC24 24-bit instruction set[]

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0 Mnemonic C
?

Z
?

N
?

Description

0 0 0 0 opcode offset Control transfers

0 0 0 0 0 0 0 0 — NOP No operation (& 2nd
instruction word)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n NOP Second word of absolute
branch (bits 22:16)

0 0 0 0 0 0 0 0 n NOP Second word of DO instruction

0 0 0 0 0 0 0 1 0 op —0— a Computed control transfer (to 16-bit Wa)

0 0 0 0 0 0 0 1 0 0 0 —0— a CALL Ra Push PC, jump to Wa

0 0 0 0 0 0 0 1 0 0 1 —0— a RCALL Ra Push PC, jump to PC+2×Wa

0 0 0 0 0 0 0 1 0 1 0 —0— a GOTO Ra Jump to Wa

0 0 0 0 0 0 0 1 0 1 1 —0— a BRA Ra Jump to PC+2×Wa

0 0 0 0 0 0 1 0 n<15:1> 0 CALL addr23 Push PC, jump to absolute
address

—0— 0 0 0 0 0 0 0 0 0 n<22:16>

0 0 0 0 0 0 1 1 — (Reserved)

0 0 0 0 0 1 0 0 n 0 GOTO addr23 Jump to absolute address

—0— 0 0 0 0 0 0 0 0 0 n<22:16>

0 0 0 0 0 1 0 1 0 B k d RETLW #k,Wd Wn[.B] = #u10, pop PC

0 0 0 0 0 1 1 0 0 0 —0— RETURN pop PC

0 0 0 0 0 1 1 0 0 1 —0— RETFIE C Z N pop SR, PC

PIC microcontroller 17

0 0 0 0 0 1 1 1 n RCALL address Push PC, PC += 2*s16

0 0 0 0 1 0 0 0 0 0 k DO #k, addr Zero-overhead loop; k+1 is
repeat count, PC+2n last
instruction

—0— n

0 0 0 0 1 0 0 0 0 0 k REPEAT #k Repeat next instruction k+1
times

0 0 0 0 1 0 0 0 n RCALL address Push PC, PC += 2*s16

0 0 0 0 1 0 1 — (Reserved)

0 0 0 0 1 1 0 a n BRA Oa, addr If accumulator an overflowed,
PC += 2*simm16

0 0 0 0 1 1 1 a n BRA Sa, addr If accumulator a saturated, PC
+= 2*simm16

0 opcode w B q d p s ALU operations: Wd ← OP(Ww,Ws)

0 0 0 1 0 w B q d p s SUBR[.B] Ww,Ws,Wd C Z N Wd ← Ws − Ww (Wd ← Ws +
~Ww + 1)

0 0 0 1 1 w B q d p s SUBBR[.B] Ww,Ws,Wd C Z N Wd ← Ws + ~Ww + C (Wd ←
Ws − Ww − C̅)

0 0 1 0 k d MOV #k,Wd Wd ← #imm16

0 0 1 1 cond n Conditional branch to PC+2*n

0 0 1 1 0 0 0 0 n BRA OV,addr Branch if PSR.V is set

0 0 1 1 0 0 0 1 n BRA C,addr Branch if PSR.C is set

0 0 1 1 0 0 1 0 n BRA Z,addr Branch if PSR.Z is set

0 0 1 1 0 0 1 1 n BRA N,addr Branch if PSR.N is set

0 0 1 1 0 1 0 0 n BRA LE,addr Branch if PSR.Z, or PSR.N ≠
PSR.V

0 0 1 1 0 1 0 1 n BRA LT,addr Branch if PSR.N ≠ PSR.V

0 0 1 1 0 1 1 0 n BRA LEU,addr Branch if PSR.Z is set, or
PSR.C is clear

0 0 1 1 0 1 1 1 n BRA addr Branch unconditionally

0 0 1 1 1 0 0 0 n BRA NOV,addr Branch if PSR.V is clear

0 0 1 1 1 0 0 1 n BRA NC,addr Branch if PSR.C is clear

0 0 1 1 1 0 1 0 n BRA NZ,addr Branch if PSR.Z is clear

0 0 1 1 1 0 1 1 n BRA NN,addr Branch if PSR.N is clear

0 0 1 1 1 1 0 0 n BRA GT,addr Branch if PSR.Z is clear, and
PSR.N = PSR.V

0 0 1 1 1 1 0 1 n BRA GE,addr Branch if PSR.N = PSR.V

0 0 1 1 1 1 1 0 n BRA GTU,addr Branch if PSR.Z is clear, and
PSR.C is set

0 0 1 1 1 1 1 1 n (Reserved)

0 opcode w B q d p s ALU operations: Wd ← OP(Ww,Ws)

0 1 0 0 0 w B q d p s ADD[.B] Ww,Ws,Wd C Z N Wd ← Ww + Ws

PIC microcontroller 18

0 1 0 0 1 w B q d p s ADDC[.B] Ww,Ws,Wd C Z N Wd ← Ww + Ws + C

0 1 0 1 0 w B q d p s SUB[.B] Ww,Ws,Wd C Z N Wd ← Ww − Ws

0 1 0 1 1 w B q d p s SUBB[.B] Ww,Ws,Wd C Z N Wd ← Ww + ~Ws + C (Wd ←
Ww − ~Ws − C̅)

0 1 1 0 0 w B q d p s AND[.B] Ww,Ws,Wd Z N Wd ← Ww & Ws, logical and

0 1 1 0 1 w B q d p s XOR[.B] Ww,Ws,Wd Z N Wd ← Ww ^ Ws, exclusive or

0 1 1 1 0 w B q d p s IOR[.B] Ww,Ws,Wd Z N Wd ← Ww | Ws, inclusive or

0 1 1 1 1 w B q d p s MOV[.B] Ws,Wd Z N Wd ← Ws (offset mode
allowed)

1 0 0 0 0 f d MOV f,Wd Wd ← f

1 0 0 0 1 f s MOV Ws,f f ← Ws

1 0 0 1 0 k B k d k s MOV [Ws+s10],Wd Load with 10-bit signed offset

1 0 0 1 1 k B k d k s MOV Ws,[Wd+s10] Store with 10-bit signed offset

1 0 1 0 0 opc b Z B 0 0 0 p s Bit operations on Ws

1 0 1 0 0 0 0 0 b 0 B 0 0 0 p s BSET[.B] #b,Ws Set bit b of Ws

1 0 1 0 0 0 0 1 b 0 B 0 0 0 p s BCLR[.B] #b,Ws Clear bit b of Ws

1 0 1 0 0 0 1 0 b 0 B 0 0 0 p s BTG[.B] #b,Ws Toggle bit b of Ws

1 0 1 0 0 0 1 1 b 0 0 0 0 0 p s BTST.C #b,Ws C Set PSR.C = bit b of Ws

1 0 1 0 0 0 1 1 b 1 0 0 0 0 p s BTST.Z #b,Ws Z Set PSR.Z to complement of bit
b of Ws

1 0 1 0 0 1 0 0 b Z 0 0 0 0 p s BTSTS.z #b,Ws C/Z Bit test (into C or Z), then set

1 0 1 0 0 1 0 1 Z w 0 0 0 0 p s BTST.z Ww,Ws C/Z Test bit (dynamic)

1 0 1 0 0 1 1 0 b 0 0 0 0 0 p s BTSS #b,Ws Test bit b of Ws, skip if set

1 0 1 0 0 1 1 1 b 0 0 0 0 0 p s BTSS #b,Ws Test bit b of Ws, skip if clear

1 0 1 0 1 opc b f Bit operations on f

1 0 1 0 1 0 0 0 b f b BSET[.B] f, #b Set bit b of f

1 0 1 0 1 0 0 1 b f BCLR.B #b,f Clear bit b of f

1 0 1 0 1 0 1 0 b f BTG.B #b,f Toggle bit b of f

1 0 1 0 1 0 1 1 b f BTST.B #b,f Z Test bit b of f

1 0 1 0 1 1 0 0 b f BTSTS.B #b,f Z Test bit b of f, then set

1 0 1 0 1 1 0 1 Z w 0 0 0 0 p s BSW.z Ws,Ww Copy PSW bit to bit Ww of Wb

1 0 1 0 1 1 1 0 b f BTSS #b,f Test bit b of f, skip if set

1 0 1 0 1 1 1 1 b f BTSC #b,f Test bit b of f, skip if clear

1 0 1 1 0 0 opc B k d Register-immediate operations

1 0 1 1 0 0 0 0 0 B k d ADD[.B] #u10,Wd C N Z Wd ← Wd + imm10

1 0 1 1 0 0 0 0 1 B k d ADC[.B] #u10,Wd C N Z Wd ← Wd + imm10 + C

1 0 1 1 0 0 0 1 0 B k d SUB[.B] #u10,Wd C N Z Wd ← Wd − imm10

1 0 1 1 0 0 0 1 1 B k d SUBB[.B] #u10,Wd C N Z Wd ← Wd − imm10 − C̅

1 0 1 1 0 0 1 0 0 B k d AND[.B] #u10,Wd N Z Wd ← Wd & imm10

PIC microcontroller 19

1 0 1 1 0 0 1 0 1 B k d XOR[.B] #u10,Wd N Z Wd ← Wd ^ imm10

1 0 1 1 0 0 1 1 0 B k d IOR[.B] #u10,Wd N Z Wd ← Wd | imm10

1 0 1 1 0 0 1 1 1 B k d MOV[.B] #u10,Wd Wd ← imm10

1 0 1 1 0 1 opc B D f ALU operations: dest ← OP(f,W0)

1 0 1 1 0 1 0 0 0 B D f ADD[.B] f[,WREG] C N Z dest ← f + W0

1 0 1 1 0 1 0 0 1 B D f ADC[.B] f[,WREG] C N Z dest ← f + W0 + C

1 0 1 1 0 1 0 1 0 B D f SUB[.B] f[,WREG] C N Z dest ← f − W0

1 0 1 1 0 1 0 1 1 B D f SUBB[.B] f[,WREG] C N Z dest ← f − W0 + C̅

1 0 1 1 0 1 1 0 0 B D f AND[.B] f[,WREG] N Z dest ← f & W0

1 0 1 1 0 1 1 0 1 B D f XOR[.B] f[,WREG] N Z dest ← f ^ W0

1 0 1 1 0 1 1 1 0 B D f IOR[.B] f[,WREG] N Z dest ← f | W0

1 0 1 1 0 1 1 1 1 B 1 f MOV[.B] WREG,f dest ← W0

1 0 1 1 1 0 0 op w d 0 p s 16×16→32 multiplication

1 0 1 1 1 0 0 0 0 w d 0 p s MUL.UU Ww,Ws,Wd Wd+1:Wd ← Wb * Ws
(unsigned)

1 0 1 1 1 0 0 0 1 w d 0 p s MUL.US Ww,Ws,Wd Wd+1:Wd ← Wb * Ws (Ws
signed)

1 0 1 1 1 0 0 1 0 w d 0 p s MUL.SU Ww,Ws,Wd Wd+1:Wd ← Wb * Ws (Wb
signed)

1 0 1 1 1 0 0 1 1 w d 0 p s MUL.SS Ww,Ws,Wd Wd+1:Wd ← Wb * Ws
(signed)

1 0 1 1 1 0 1 op w d p s Program memory access

1 0 1 1 1 0 1 0 0 B qqq d p s TBLRDL [Ws],Wd Wd ←
PROGRAM[TBLPAG:Ws]
(bits 15:0)

1 0 1 1 1 0 1 0 1 B qqq d p s TBLRDH [Ws],Wd Wd ←
PROGRAM[TBLPAG:Ws] (bit
23:16)

1 0 1 1 1 0 1 1 0 B qqq d p s TBLWTL Ws,[Wd] PROGRAM[TBLPAG:Wd] ←
Ws (bits 15:0)

1 0 1 1 1 0 1 1 1 B qqq d p s TBLWTH [Ws],[Wd] PROGRAM[TBLPAG:Wd] ←
Ws (bit 23:16)

1 0 1 1 1 1 0 0 0 B 0 f MUL[.B] f W3:W2 ← f * W0 (unsigned)

1 0 1 1 1 1 0 1 — (Reserved)

1 0 1 1 1 1 1 0 0 0 000 d 0 p s MOV.D Ws,Wd Move register pair (source may
be memory)

1 0 1 1 1 1 1 0 1 0 q d 000 s 0 MOV.D Ws,Wd Move register pair (dest may be
memory)

1 0 1 1 1 1 1 1 — (Reserved)

1 1 0 0 0 m A S x y i j a DSP MAC (dsPIC only)

1 1 0 0 1 Other DSP instructions (dsPIC only)

1 1 0 0 1 1 1 1 0 0 000 d p s FF1R Ws,Wd Find first one from right (lsb)

PIC microcontroller 20

1 1 0 0 1 1 1 1 1 0 000 d p s FF1L Ws,Wd Find first one from left (msb)

1 1 0 1 0 0 opc B q d p s Shift/rotate W register

1 1 0 1 0 0 0 0 0 B q d p s SL[.B] Ws,Wd C N Z Wd ← Ws << 1, shift left (into
carry)

1 1 0 1 0 0 0 1 0 B q d p s LSR[.B] Ws,Wd C N Z Wd ← Ws >> 1, logical shift
right

1 1 0 1 0 0 0 1 1 B q d p s ASR[.B] Ws,Wd C N Z Wd ← Ws >> 1, arithmetic
shift right

1 1 0 1 0 0 1 0 0 B q d p s RLNC[.B] Ws,Wd N Z Wd ← Ws <<< 1, rotate left
(no carry)

1 1 0 1 0 0 1 0 1 B q d p s RLC[.B] Ws,Wd C N Z C:Wd ← Ws:C << 1, rotate left
through carry

1 1 0 1 0 0 1 1 0 B q d p s RRNC[.B] Ws,Wd N Z Wd ← Ws >>> 1, rotate right
(no carry)

1 1 0 1 0 0 1 1 1 B q d p s RRC[.B] Ws,Wd C N Z Wd:C ← C:Ws >> 1, rotate
right through carry

1 1 0 1 0 1 opc B D f Shift/rotate f

1 1 0 1 0 1 0 0 0 B D f SL[.B] f[,WREG] C N Z dest ← f << 1, shift left (into
carry)

1 1 0 1 0 1 0 1 0 B D f LSR[.B] f[,WREG] C N Z dest ← f >> 1, logical shift
right

1 1 0 1 0 1 0 1 1 B D f ASR[.B] f[,WREG] C N Z dest ← f >> 1, arithmetic shift
right

1 1 0 1 0 1 1 0 0 B D f RLNC[.B] f[,WREG] N Z dest ← f <<< 1, rotate left (no
carry)

1 1 0 1 0 1 1 0 1 B D f RLC[.B] f[,WREG] C N Z C:dest ← f:C << 1, rotate left
through carry

1 1 0 1 0 1 1 1 0 B D f RRNC[.B] f[,WREG] N Z dest ← f >>> 1, rotate right (no
carry)

1 1 0 1 0 1 1 1 1 B D f RRC[.B] f[,WREG] C N Z dest:C ← C:f >> 1, rotate right
through carry

1 1 0 1 1 0 0 0 U t v W 0 0 s 32/16 and 16/16 divide steps (prefix with REPEAT #17)

1 1 0 1 1 0 0 0 0 0000 v 0 0 0 s DIV.S Wv,Ws C N Z Divide step, W0 ← Wv/Ws,
W1 ← remainder

1 1 0 1 1 0 0 0 0 t v 1 0 0 s DIV.SD Wv,Ws C N Z Divide step, W0 ←
Wt:Wv/Ws, W1 ← remainder

1 1 0 1 1 0 0 0 1 0000 v 0 0 0 s DIV.U Wv,Ws C N Z Divide step, W0 ← Wv/Ws,
W1 ← remainder

1 1 0 1 1 0 0 0 1 t v 1 0 0 s DIV.UD Wv,Ws C N Z Divide step, W0 ←
Wt:Wv/Ws, W1 ← remainder

1 1 0 1 1 0 0 1 0 t 0 0 0 0 0 0 0 s DIVF Wt,Ws C N Z Divide step, W0 ← Wt:0/Ws,
W1 ← remainder

1 1 0 1 1 0 1 — (Reserved)

1 1 0 1 1 1 0 0 — (Reserved)

1 1 0 1 1 1 0 0 0 w d 0 0 0 s SL Ww,Ws,Wd N Z Wd ← Wv << Ws

PIC microcontroller 21

1 1 0 1 1 1 0 0 0 w d 1 0 0 k SL Ww,#u4,Wd N Z Wd ← Wv << imm4

1 1 0 1 1 1 1 0 0 w d 0 0 0 s LSR Ww,Ws,Wd N Z Wd ← Wv>> Ws, logical shift
right

1 1 0 1 1 1 1 0 0 w d 1 0 0 k LSR Ww,#u4,Wd N Z Wd ← Wv>> imm4, logical
shift right

1 1 0 1 1 1 1 0 1 w d 0 0 0 s ASR Ww,Ws,Wd N Z Wd ← Wv>> Ws, arithmetic
shift right

1 1 0 1 1 1 1 0 1 w d 1 0 0 k ASR Wv,#u4,Wd N Z Wd ← Wv>> imm4, arithmetic
shift right

1 1 0 1 1 1 1 1 0 0000 d p s FBCL Ws,Wd C Find permissible arithmetic
normalization shift

1 1 1 0 0 0 0 0 0 0000 B 0 0 0 p s CP0[.B] Ws C N Z Compare with zero, Ws − 0

1 1 1 0 0 0 0 1 0 w B 0 0 0 p s CP[.B] Ww,Ws C N Z Compare, Wb − Ws (Wb +
~Ws + 1)

1 1 1 0 0 0 0 1 1 w B 0 0 0 p s CPB[.B] Ww,Ws C N Z Compare with borrow, Wb +
~Ws + C (Wb − Ws − C̅)

1 1 1 0 0 0 1 0 0 B 0 f CP0[.B] Ws C N Z Compare with zero, f − 0

1 1 1 0 0 0 1 1 0 B 0 f CP[.B] f C N Z Compare f, f − W0

1 1 1 0 0 0 1 1 1 B 0 f CPB[.B] f C N Z Compare f with borrow, f +
~W0 + C (f − W0 − C̅)

1 1 1 0 0 1 0 — (Reserved)

1 1 1 0 0 1 1 0 0 w B 0 0 0 0 0 0 s CPSGT[.B] Ww,Ws Compare and skip if greater
than (Wb > Ws, signed)

1 1 1 0 0 1 1 0 1 w B 0 0 0 0 0 0 s CPSLT[.B] Ww,Ws Compare and skip if less than
(Wb < Ws, signed)

1 1 1 0 0 1 1 1 0 w B 0 0 0 0 0 0 s CPSNE[.B] Ww,Ws Compare and skip if not equal
(Wb ≠ Ws)

1 1 1 0 0 1 1 1 1 w B 0 0 0 0 0 0 s CPSNE[.B] Ww,Ws Compare and skip if equal (Wb
= Ws)

1 1 1 0 1 0 0 0 0 B q d p s INC[.B] Ws,Wd C N Z Wd ← Ws+1

1 1 1 0 1 0 0 0 1 B q d p s INC2[.B] Ws,Wd C N Z Wd ← Ws+2

1 1 1 0 1 0 0 1 0 B q d p s DEC[.B] Ws,Wd C N Z Wd ← Ws−1

1 1 1 0 1 0 0 1 1 B q d p s DEC2[.B] Ws,Wd C N Z Wd ← Ws−2

1 1 1 0 1 0 1 0 0 B q d p s NEG[.B] Ws,Wd C N Z Wd ← ~Ws+1

1 1 1 0 1 0 1 0 1 B q d p s COM[.B] Ws,Wd N Z Wd ← ~Ws

1 1 1 0 1 0 1 1 0 B q d 000 0000 CLR[.B] Wd Wd ← 0

1 1 1 0 1 0 1 1 1 B q d 000 0000 SETM[.B] Wd Wd ← ~0

1 1 1 0 1 1 0 0 0 B D f INC[.B] f[,WREG] C N Z dest ← f+1

1 1 1 0 1 1 0 0 1 B D f INC2[.B] f[,WREG] C N Z dest ← f+2

1 1 1 0 1 1 0 1 0 B D f DEC[.B] f[,WREG] C N Z dest ← f−1

1 1 1 0 1 1 0 1 1 B D f DEC[.B] f[,WREG] C N Z dest ← f−2

1 1 1 0 1 1 1 0 0 B D f NEG[.B] f[,WREG] C N Z dest ← ~f+1

1 1 1 0 1 1 1 0 1 B D f COM[.B] f[,WREG] N Z dest ← ~f

PIC microcontroller 22

1 1 1 0 1 1 1 1 0 B D f CLR[.B] f[,WREG] dest ← 0

1 1 1 0 1 1 1 1 1 B D f SETM[.B] f[,WREG] dest ← ~0

1 1 1 1 0 0 m A 1 x y i j opc DSP MPY/MAC/ED/EDAC (dsPIC only)

1 1 1 1 0 1 — (Reserved)

1 1 1 1 1 0 0 0 f 0 PUSH f Push f on top of stack

1 1 1 1 1 0 0 1 f 0 POP f Pop f from top of stack

1 1 1 1 1 0 1 0 0 0 k LNK #u14 Push W14, W14 ← W15, W15
+= u14

1 1 1 1 1 0 1 0 1 0 —0— ULNK W15 ← W14, pop W14

1 1 1 1 1 0 1 1 0 0 000 d p s SE Ws,Wd C N Z Wd ← sign_extend(Ws), copy
bit 7 to bits 15:8

1 1 1 1 1 0 1 1 1 0 000 d p s ZE Ws,Wd 1 0 Z Wd ← zero_extend(Ws), clear
bits 15:8

1 1 1 1 1 1 0 0 0 0 k DISI #u14 Disable interrupt for k+1 cycles

1 1 1 1 1 1 0 1 0 0 000 d 000 s EXCH Ws,Wd Swap contents of registers Ws,
Wd

1 1 1 1 1 1 0 1 0 1 000 0000 000 s DAW.B Ws C Decimal adjust based on C, DC

1 1 1 1 1 1 0 1 1 B 000 0000 000 s SWAP[.B] Ws Swap halves of Ws

1 1 1 1 1 1 1 0 0 0 —0— RESET Software reset

1 1 1 1 1 1 1 0 0 1 0 —0— k PWRSAV #u1 Go into sleep or idle mode

1 1 1 1 1 1 1 0 0 1 1 —0— CLRWDT Clear watchdog timer

1 1 1 1 1 1 1 0 1 0 0 —0— POP.S Pop shadow registers (W0–3,
part of PSR)

1 1 1 1 1 1 1 0 1 0 1 —0— PUSH.S Push shadow registers (W0–3,
part of PSR)

1 1 1 1 1 1 1 0 1 1 — (Reserved)

1 1 1 1 1 1 1 1 — NOPR No operation (version #2)

PIC32 32-bit microcontrollers
In November 2007 Microchip introduced the new PIC32MX [18] family of 32-bit microcontrollers. The initial device
line-up is based on the industry standard MIPS32 M4K Core.[19] The device can be programmed using the
Microchip MPLAB C Compiler for PIC32 MCUs [20], a variant of the GCC compiler. The first 18 models currently
in production (PIC32MX3xx and PIC32MX4xx) are pin to pin compatible and share the same peripherals set with
the PIC24FxxGA0xx family of (16-bit) devices allowing the use of common libraries, software and hardware tools.
Today starting at 28 pin in small QFN packages up to high performance devices with Ethernet, CAN and USB OTG,
full family range of mid-range 32-bit microcontrollers are available.
The PIC32 architecture brings a number of new features to Microchip portfolio, including:
• The highest execution speed 80 MIPS (120+[21] Dhrystone MIPS @ 80 MHz)
•• The largest flash memory: 512 kByte
•• One instruction per clock cycle execution
•• The first cached processor
•• Allows execution from RAM

http://ww1.microchip.com/downloads/en/DeviceDoc/61177a.pdf
http://en.wikipedia.org/w/index.php?title=MIPS_architecture
http://microchip.com/c32
http://en.wikipedia.org/w/index.php?title=Dhrystone

PIC microcontroller 23

•• Full Speed Host/Dual Role and OTG USB capabilities
• Full JTAG and 2 wire programming and debugging
•• Real-time trace

Device variants and hardware features
PIC devices generally feature:
•• Sleep mode (power savings).
• Watchdog timer.
• Various crystal or RC oscillator configurations, or an external clock.

Variants
Within a series, there are still many device variants depending on what hardware resources the chip features.
• General purpose I/O pins.
•• Internal clock oscillators.
•• 8/16/32 Bit Timers.
• Internal EEPROM Memory.
• Synchronous/Asynchronous Serial Interface USART.
• MSSP Peripheral for I²C and SPI Communications.
• Capture/Compare and PWM modules.
• Analog-to-digital converters (up to ~1.0 MHz).
• USB, Ethernet, CAN interfacing support.
•• External memory interface.
•• Integrated analog RF front ends (PIC16F639, and rfPIC).
• KEELOQ Rolling code encryption peripheral (encode/decode)
•• And many more.

Trends
The first generation of PICs with EPROM storage are almost completely replaced by chips with Flash memory.
Likewise, the original 12-bit instruction set of the PIC1650 and its direct descendants has been superseded by 14-bit
and 16-bit instruction sets. Microchip still sells OTP (one-time-programmable) and windowed (UV-erasable)
versions of some of its EPROM based PICs for legacy support or volume orders. The Microchip website lists PICs
that are not electrically erasable as OTP. UV erasable windowed versions of these chips can be ordered.

Part number suffixes
The F in a name generally indicates the PICmicro uses flash memory and can be erased electronically. Conversely, a
C generally means it can only be erased by exposing the die to ultraviolet light (which is only possible if a windowed
package style is used). An exception to this rule is the PIC16C84 which uses EEPROM and is therefore electrically
erasable.
An L in the name indicates the part will run at a lower voltage, often with frequency limits imposed.[]

Parts designed specifically for low voltage operation, within a strict range of 3 - 3.6 volts, are marked with a J in the
part number. These parts are also uniquely I/O tolerant as they will accept up to 5 V as inputs.[]

http://en.wikipedia.org/w/index.php?title=Joint_Test_Action_Group
http://en.wikipedia.org/w/index.php?title=Watchdog_timer
http://en.wikipedia.org/w/index.php?title=RC_circuit
http://en.wikipedia.org/w/index.php?title=GPIO
http://en.wikipedia.org/w/index.php?title=EEPROM
http://en.wikipedia.org/w/index.php?title=USART
http://en.wikipedia.org/w/index.php?title=I%C2%B2C
http://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface
http://en.wikipedia.org/w/index.php?title=Pulse-width_modulation
http://en.wikipedia.org/w/index.php?title=Analog-to-digital_converter
http://en.wikipedia.org/w/index.php?title=Hertz
http://en.wikipedia.org/w/index.php?title=Ethernet
http://en.wikipedia.org/w/index.php?title=Controller_Area_Network
http://en.wikipedia.org/w/index.php?title=KeeLoq
http://en.wikipedia.org/w/index.php?title=EPROM
http://en.wikipedia.org/w/index.php?title=Flash_memory

PIC microcontroller 24

PIC clones
Third party manufacturers make compatible products, for example the Parallax SX.

Development tools
Microchip provides a freeware IDE package called MPLAB, which includes an assembler, linker, software
simulator, and debugger. They also sell C compilers for the PIC18 and dsPIC which integrate cleanly with MPLAB.
Free student versions of the C compilers are also available with all features. But for the free versions, optimizations
will be disabled after 60 days.[22]

Several third parties make C language compilers for PICs, many of which integrate to MPLAB and/or feature their
own IDE. A fully featured compiler for the PICBASIC language to program PIC microcontrollers is available from
meLabs, Inc. Mikroelektronika offers PIC compilers in C, Basic and Pascal programming languages.
A graphical programming language, Flowcode, exists capable of programming 8 and 16 bit PIC devices and
generating PIC compatible C code. It exists in numerous versions from a free demonstration to a more complete
professional edition.
The only opensource compiler for the PIC16 and PIC18 family is the SDCC. It make use of GPutils for linker and
assembler tools. A plugin is needed to install them in MPLAB or MPLABX.[23]

Development tools are available for the PIC family under the GPL or other free software or open source licenses.

Device programmers
Devices called "programmers" are traditionally used to get program code into the target PIC. Most PICs that
Microchip currently sell feature ICSP (In Circuit Serial Programming) and/or LVP (Low Voltage Programming)
capabilities, allowing the PIC to be programmed while it is sitting in the target circuit. ICSP programming is
performed using two pins, clock and data, while a high voltage (12V) is present on the Vpp/MCLR pin. Low voltage
programming dispenses with the high voltage, but reserves exclusive use of an I/O pin and can therefore be disabled
to recover the pin for other uses (once disabled it can only be re-enabled using high voltage programming).
There are many programmers for PIC microcontrollers, ranging from the extremely simple designs which rely on
ICSP to allow direct download of code from a host computer, to intelligent programmers that can verify the device at
several supply voltages. Many of these complex programmers use a pre-programmed PIC themselves to send the
programming commands to the PIC that is to be programmed. The intelligent type of programmer is needed to
program earlier PIC models (mostly EPROM type) which do not support in-circuit programming.
Many of the higher end flash based PICs can also self-program (write to their own program memory). Demo boards
are available with a small bootloader factory programmed that can be used to load user programs over an interface
such as RS-232 or USB, thus obviating the need for a programmer device. Alternatively there is bootloader firmware
available that the user can load onto the PIC using ICSP. The advantages of a bootloader over ICSP is the far
superior programming speeds, immediate program execution following programming, and the ability to both debug
and program using the same cable.
Programmers/debuggers are available directly from Microchip. Third party programmers range from plans to build
your own, to self-assembly kits and fully tested ready-to-go units. Some are simple designs which require a PC to do
the low-level programming signalling (these typically connect to the serial or parallel port and consist of a few
simple components), while others have the programming logic built into them (these typically use a serial or USB
connection, are usually faster, and are often built using PICs themselves for control).
The following are the official PICkit programmer/debuggers from Microchip:

http://en.wikipedia.org/w/index.php?title=Parallax_SX
http://en.wikipedia.org/w/index.php?title=Freeware
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=MPLAB
http://en.wikipedia.org/w/index.php?title=Simulator
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Compilers
http://en.wikipedia.org/w/index.php?title=Mikroelektronika
http://en.wikipedia.org/w/index.php?title=Flowcode
http://en.wikipedia.org/w/index.php?title=Small_Device_C_Compiler
http://en.wikipedia.org/w/index.php?title=GPutils
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=Programmer_%28hardware%29
http://en.wikipedia.org/w/index.php?title=In_Circuit_Serial_Programming_%28ICSP%29
http://en.wikipedia.org/w/index.php?title=Low_Voltage_Programming
http://en.wikipedia.org/w/index.php?title=Electronic_circuit
http://en.wikipedia.org/w/index.php?title=RS-232
http://en.wikipedia.org/w/index.php?title=Universal_Serial_Bus
http://en.wikipedia.org/w/index.php?title=Serial_port
http://en.wikipedia.org/w/index.php?title=Parallel_port

PIC microcontroller 25

Microchip PICkit1 Microchip PICkit2 Microchip PICkit3

PICKit 2 clones and open source
PICKit 2 has been an interesting PIC programmer from Microchip. It can program all PICs and debug most of the
PICs (as of May-2009, only the PIC32 family is not supported for MPLAB debugging). Ever since its first releases,
all software source code (firmware, PC application) and hardware schematic are open to the public. This makes it
relatively easy for an end user to modify the programmer for use with a non-Windows operating system such as
Linux or Mac OS. In the mean time, it also creates lots of DIY interest and clones. This open source structure brings
many features to the PICKit 2 community such as Programmer-to-Go, the UART Tool and the Logic Tool, which
have been contributed by PICKit 2 users. Users have also added such features to the PICKit 2 as 4MB
Programmer-to-go capability, USB buck/boost circuits, RJ12 type connectors and others.

Debugging

Software emulation
Commercial and free emulators exist for the PIC family processors.

In-circuit debugging
Later model PICs feature an ICD (in-circuit debugging) interface, built into the CPU core. ICD debuggers (MPLAB
ICD2 and other third party) can communicate with this interface using three lines. This cheap and simple debugging
system comes at a price however, namely limited breakpoint count (1 on older pics 3 on newer PICs), loss of some
IO (with the exception of some surface mount 44-pin PICs which have dedicated lines for debugging) and loss of
some features of the chip. For small PICs, where the loss of IO caused by this method would be unacceptable,
special headers are made which are fitted with PICs that have extra pins specifically for debugging.

In-circuit emulators
Microchip offers three full in-circuit emulators: the MPLAB ICE2000 (parallel interface, a USB converter is
available); the newer MPLAB ICE4000 (USB 2.0 connection); and most recently, the REAL ICE. All of these ICE
tools can be used with the MPLAB IDE for full source-level debugging of code running on the target.
The ICE2000 requires emulator modules, and the test hardware must provide a socket which can take either an
emulator module, or a production device.
The REAL ICE connects directly to production devices which support in-circuit emulation through the PGC/PGD
programming interface, or through a high speed connection which uses two more pins. According to Microchip, it
supports "most" flash-based PIC, PIC24, and dsPIC processors.[24]

The ICE4000 is no longer directly advertised on Microchip's website, and the purchasing page states that it is not
recommended for new designs.

http://en.wikipedia.org/w/index.php?title=File%3APickit1_top.jpg
http://en.wikipedia.org/w/index.php?title=File%3APICkit2.jpg
http://en.wikipedia.org/w/index.php?title=File%3APICKit3.jpg
http://en.wikipedia.org/w/index.php?title=In-circuit_emulator

PIC microcontroller 26

References
[1] http:/ / ww1. microchip. com/ downloads/ en/ DeviceDoc/ 39630C. pdf
[2] http:/ / www. datasheetarchive. com/ dl/ Databooks-1/ Book241-407. pdf
[3] "PICmicro Family Tree", PIC16F Seminar Presentation http:/ / www. microchip. com. tw/ PDF/ 2004_spring/

PIC16F%20seminar%20presentation. pdf
[4][4] "MOS DATA 1976", General Instrument 1976 Databook
[5] "1977 Data Catalog", Micro Electronics from General Instrument Corporation http:/ / www. rhoent. com/ pic16xx. pdf
[6] http:/ / ww1. microchip. com/ downloads/ en/ DeviceDoc/ 35007b. pdf
[8] Microchip Product Selector (http:/ / www. microchip. com/ productselector/ MCUProductSelector. html)
[9] "PIC Paging and PCLATH" (http:/ / massmind. org/ techref/ microchip/ pages. htm)
[11] http:/ / www. emc. com. tw/ eng/ products. asp
[13] http:/ / mdubuc. freeshell. org/ Sdcc/
[14] http:/ / www. microchipc. com/ sourcecode/
[16] (http:/ / www. microchip. com/ stellent/ idcplg?IdcService=SS_GET_PAGE& nodeId=2018& mcparam=en013529)
[18] http:/ / ww1. microchip. com/ downloads/ en/ DeviceDoc/ 61177a. pdf
[19] http:/ / www. mips. com/ products/ processors/ 32-64-bit-cores/ mips32-m4k/
[20] http:/ / microchip. com/ c32

External links
• PIC microcontroller (http:/ / www. dmoz. org/ Computers/ Hardware/ Components/ Processors/ PIC/ /) at the

Open Directory Project.
• Official Microchip website (http:/ / www. microchip. com/)
• PIC wifi projects website (http:/ / www. libstock. com/ project_categories/ view/ 25/ wifi/)

http://ww1.microchip.com/downloads/en/DeviceDoc/39630C.pdf
http://www.datasheetarchive.com/dl/Databooks-1/Book241-407.pdf
http://www.microchip.com.tw/PDF/2004_spring/PIC16F%20seminar%20presentation.pdf
http://www.microchip.com.tw/PDF/2004_spring/PIC16F%20seminar%20presentation.pdf
http://www.rhoent.com/pic16xx.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf
http://www.microchip.com/productselector/MCUProductSelector.html
http://massmind.org/techref/microchip/pages.htm
http://www.emc.com.tw/eng/products.asp
http://mdubuc.freeshell.org/Sdcc/
http://www.microchipc.com/sourcecode/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en013529
http://ww1.microchip.com/downloads/en/DeviceDoc/61177a.pdf
http://www.mips.com/products/processors/32-64-bit-cores/mips32-m4k/
http://microchip.com/c32
http://www.dmoz.org/Computers/Hardware/Components/Processors/PIC//
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://www.microchip.com/
http://www.libstock.com/project_categories/view/25/wifi/

Article Sources and Contributors 27

Article Sources and Contributors
PIC microcontroller Source: http://en.wikipedia.org/w/index.php?oldid=570483753 Contributors: .digamma, 10metreh, 28421u2232nfenfcenc, 2A00:1398:4:0:6E62:6DFF:FE5F:71E, A little
insignificant, A. B., Abdull, Adam1213, Adambro, Ahoerstemeier, Akilaa, Alansohn, Alecv, Aleksandarbrain, AlexOvShaolin, Alexdzm90, Alistair1978, Allens, Allstarecho, Alvin-cs, Andy
Dingley, Angelpeream, ArglebargleIV, Atomsmith, Attilios, Avochelm, Azhyd, Barefoottech, Barek, Bejnar, Bernard Teo, Betatester228, Bgwhite, Bmearns, Bo102010, Bobo192,
Bombadier337, Bradediger, Brammers, BrianWilloughby, Brighterorange, BrotherE, Brouhaha, Browsem, Bsodmike, Bugfarmer, CSumit, Calltech, CanOfWorms, CanisRufus, Carveone,
Cashimor, Choppingmall, Chowbok, Chris Roy, Chris the speller, ChrisJ, Ckielstra, Colonies Chris, Cometstyles, CommonsDelinker, Cyanoir, CyrilB, Dan Gardner, Danara5, Danim,
DavesPlanet, DavidCary, Davitenio, Dcamp314, Devon Sean McCullough, Dhx1, DiamondDevil, Dicklyon, DimychUA, Dirac1933, Dirkbb, Dogcow, Ds13, Electron9, Eplondke, Erpingham,
EvanCarroll, Eworldprojects, Excirial, Fabero74, Ferritecore, Fiducial, Firsfron, Fixentries, FourBlades, Fransschreuder, Frap, Frecklefoot, Furrykef, Gadlen, Gaius Cornelius, Gauravsangwan,
Gcm, Gene Nygaard, Gengiskanhg, GermanX, Gfutia, Gilliam, Glenn, Goldzen, GraemeL, Greglecuyer, Guy Macon, Gwernol, Hawk777, Hellisp, HenkeB, Heracles31, Heron, Hithisishal,
Hyvatti, Ihope127, Ikmac, Imroy, Insanity Incarnate, Intersofia, Izx, Jaanus.kalde, Jahoe, James086, Jamodio, Japo, Jason One, Javawizard, Jburstein, Jd4x4, Jerryobject, JesseHogan, Jfraser,
Jhallenworld, Jianhui67, Johnpeterharvey, Jon-ecm, JonHarder, Jonathanwagner, Jonny wdrw, Jrash, Jwortzel, Karlwk, Katalaveno, Kateshortforbob, Kevin E Hawkins, Kinema, Kizor,
KnowledgeOfSelf, Knuckx, Kubing, Kuru, Kyxui, Lauri.pirttiaho, Lerdthenerd, Liqk, Lmblackjack21, Lraingele, Lrb13615, MZMcBride, Ma3nocum, Mac, Magioladitis, Mahjongg,
Margin1522, Mat-C, Mateo LeFou, Materialscientist, Matt B., MatthewJBennett, Matthewmadmad, Maury Markowitz, Mboverload, Mdenton, Megamix, Miceduan, Michael Hardy, MichaelFrey,
Mikemurphy, Mintleaf, MohammadEbrahim, Monkeyman, Morcheeba, Mortense, MortimerCat, Morwen, Moxfyre, Mr Stephen, Mr z, Nabokov, Nat1192, Niggurath, NightFalcon90909,
Nishkid64, NobbiP, Nuno Tavares, Omegatron, Onorai, OpBanana, Outback the koala, PJohnson, PPA94, PSL, Pazza pazza, Peter todd, Philip Trueman, Pip2andahalf, Plaasjaapie, Plasticup,
Plugwash, Ppapadeas, RCX, Ramsey585, Randomblue, RedWolf, Redfarmer, Reelrt, RenamedUser01302013, Rich Farmbrough, Rjwilmsi, Rod57, Ronz, S.riccardelli, SJP, Saimhe, Samwb123,
Satellizer, Sbmeirow, Sbogdanov, Shadowjams, SheepNotGoats, Shjacks45, Shoez, Skeeter2, Smishek, Smt52, Softy, Speedevil, SpuriousQ, Stan Shebs, Stingraze, Stjrna, Strigoides, Sv1xv,
Sxpilot250, Tabletop, Taemyr, Talkie tim, TechPurism, Tempodivalse, Thunderchild, Tide rolls, Toddsoc, Tom Morris, Toussaint, Trialsanderrors, Turbo852, Una Smith, Uzume, Val42, Vary,
Velociostrich, Vic93, Voidxor, WardXmodem, Warnockm, Washburnmav, Wavelength, Wdfarmer, Weopgon, Wernher, Wik, Wiki alf, Wikiwooroo, WimHeirman, Wjw1961, Wtshymanski,
X201, Yunshui, ZaferXYZ, Zetawoof, Zoicon5, Zzuuzz, 806 anonymous edits

Image Sources, Licenses and Contributors
Image:PIC microcontrollers.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PIC_microcontrollers.jpg License: Public Domain Contributors: MikeMurphy
Image:Microchip PIC24HJ32GP202.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Microchip_PIC24HJ32GP202.jpg License: Creative Commons Attribution-Share Alike
 Contributors: User:Acdx, User:GeorgHH
Image:PIC12C508-HD.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PIC12C508-HD.jpg License: Creative Commons Attribution 3.0 Contributors: Dhx1
Image:PIC16C505-HD.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PIC16C505-HD.jpg License: Creative Commons Attribution 3.0 Contributors: Dhx1
Image:PIC16CxxxWIN.JPG Source: http://en.wikipedia.org/w/index.php?title=File:PIC16CxxxWIN.JPG License: Creative Commons Attribution-ShareAlike 3.0 Unported Contributors:
Camillo, Glenn
Image:Pickit1 top.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Pickit1_top.jpg License: Copyrighted free use Contributors: User:Dhenry
Image:PICkit2.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PICkit2.jpg License: Creative Commons Attribution-ShareAlike 3.0 Unported Contributors: User:NobbiP
Image:PICKit3.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PICKit3.jpg License: Copyrighted free use Contributors: Glossywhite

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/

	PIC microcontroller
	History
	Core architecture
	Data space (RAM)
	Code space
	Word size
	Stacks
	Instruction set
	Performance
	Advantages
	Limitations
	Compiler development

	Family core architectural differences
	Baseline core devices (12 bit)
	ELAN Microelectronics clones (13 bit)
	Mid-range core devices (14 bit)
	Enhanced mid-range core devices (14 bit)
	PIC17 high end core devices (16 bit)
	PIC18 high end core devices (16 bit)
	PIC24 and dsPIC 16-bit microcontrollers
	PIC32 32-bit microcontrollers

	Device variants and hardware features
	Variants
	Trends
	Part number suffixes
	PIC clones

	Development tools
	Device programmers
	PICKit 2 clones and open source

	Debugging
	Software emulation
	In-circuit debugging
	In-circuit emulators

	References
	External links

	License

